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Abstract

This paper presents novel three-wave-hybrid solutions for the (3+1)D generalized shallow water

wave equation, derived via the combined application of the Hirota bilinear method and the test func-

tion approach. These solutions introduce an arbitrary function and a multitude of arbitrary constants,

enriching the diversity of solutions and offering a more comprehensive view of the solution’s structural

complexity. The unveiled nonlinear phenomena within the equation provide deeper insights into the

underlying dynamics, which are crucial for understanding complex wave dynamics within both aquatic

and atmospheric environments. The solutions have significant implications for the fields of hydrodynam-

ics, geophysics, and atmospheric science, as they can be used to study the propagation and attenuation

of waves in shallow water and the effects of natural phenomena such as tides and storms. Digital im-

ages accompanying the study partially illustrate the propagation patterns of the waves, enhancing the

visual comprehension of the theoretical findings and providing a clearer understanding of the practical

applications in predicting and managing wave behavior.

Keywords: The (3+1)D generalized shallow water wave equation; The bilinear form; The three-wave-

hybrid solution

1 Introduction

In the realm of nonlinear science, the (3+1)D generalized shallow water wave equation stands as a cor-

nerstone for understanding complex wave dynamics within both aquatic and atmospheric environments.

This fundamental mathematical model is characterized by the following expression[1-2]:

uyt + uxxxy − 3uxuxy − 3uxxuy − uxz = 0, (1)
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This model provides a critical framework for describing wave phenomena in oceanic and atmospheric

systems, enabling the study of wave propagation and attenuation in shallow water as well as the effects

of natural events such as tides and storms[3]. Therefore, it has great significance and value in the fields

of hydrodynamics, geophysics and atmospheric science. Many researchers have studied this equation and

obtained innovative results which include the structures and propagation behavior of the solutions [1-21],

such as multiple-soliton solutions[3], solitary wave solutions and periodic wave solutions[6,7,12,13], lump

solutions and rogue wave solutions[9-11] , periodic solitary wave solutions[8], Grammian and Pfaffian

solutions[15], traveling wave solutions and non-traveling wave solutions[16], rational solutions and lump

solutions[18]; Some researchers have also studied the variable-coefficient (3+1)-dimensional generalized

shallow water wave equation and have obtained soliton solutions and periodic wave solutions[7]. Among

the results obtained, the Hirota bilinear method is the most applied approach. Despite the solutions

of various structures have been obtained for the the(3+1)D generalized shallow water wave equation,

however, we also find that the solution of this equation still has new structures and evolution.

In this work, we have employed the Hirota bilinear method and the test function method to derive two

innovative three-wave hybrid solutions for Eq.(1)[23-26]. These solutions are characterized by the presence

of an arbitrary function and numerous arbitrary constants, which allow for the generation of solutions

exhibiting diverse characteristics, such as chain soliton solution, periodic three- wave solution and lump

solution. This breakthrough provides deeper insights into the nonlinear mechanisms embedded within

Eq.(1), thereby enhancing our comprehension of natural phenomena and facilitating the development of

more efficacious strategies for control and optimization.

The paper is organized as follows: Section 2 outlines the derivation of the bilinear form for Eq. (1)

and presents several exact solutions. Section 3 offers a partial analysis of the dynamical behavior of these

solutions. Finally, Section 4 summarizes the findings and conclusions of the study.

2 The bilinear form and three-wave-hybrid solutions for Eq.(1)

First, we suppose

u(x, y, z, t) = −2∂x[ln(f(x, y, z, t))], (2)

Substitute Eq. (2) into Eq. (1) yields:

−2∂x[ln(f)yt]− 2∂x[ln(f)xxxy]− 12∂x[ln(f)xxln(f)xy] + 2∂x[ln(f)xz] = 0, (3)

Integrating Eq. (3) with respect to x(setting the integration constant to zero) and simplifying, we obtain:

2(fytf−fyft)+2(fxxxyf+3fxxfxy−3fxxyfx−fxxxfy)−2(fxzf−fxfz)
f2 = 0, (4)

or equivalent bilinear equation

(DyDt +D3
xDy −DxDz)f · f = 0, (5)
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where the operator Dx, Dy, Dz, Dt are original Hirota bilinear operators[18], which are defined by

Dm
x Dn

yD
i
zD

j
t (f · g) = ( ∂

∂x − ∂
∂x′ )

m( ∂
∂y − ∂

∂y′ )
n( ∂

∂z − ∂
∂z′ )

i

( ∂
∂t −

∂
∂t′ )

jf(x, y, z, t)g(x′, y′, z′, t′)|x′ = x, y′ = y, z′ = z, t′ = t.

(6)

where f(x, y, z, t) is a differentiable function of x, y, z and t, g(x′, y′, z′, t′) is a differentiable function of

the formal variables x′, y′, z′ and t′, and m,n, i and j are the non-negative integers.

Secondly, two test functions of three-wave structure are considered respectively.

Case I : The first test function introduced is as follows

f(x, y, z, t) = E +A cosh(ζ) +B cosh(θ) + CP (ξ), ζ = R1(K1x+K2y +K3z +K4t+K0),

θ = R2(L1x+ L2y + L3z + L4t+ L0), ξ = R3(J1x+ J2y + J3z + J4t+ J0),

(7)

where Ki, Li, Ji(i = 0, 1, 2, 3, 4) and A,B,C,E,R1, R2, R3 are undetermined constants and P (ξ) is an

arbitrary function of the variable ξ . By substituting Eq. (7) into Eq. (4), an equation in terms of the

functions cosh(ζ), sinh(ζ), cosh(θ), sinh(θ) and ∂nP
∂ξn (n = 0, 1, 2, 3, 4) is produced:

F (cosh(ζ), sinh(ζ), cosh(θ), sinh(θ), P (ξ), ∂P
∂ξ ,

∂2P
∂ξ2 ,

∂3P
∂ξ3 ,

∂4P
∂ξ4 ) = 0. (8)

From the linear independence of the above functions, we obtain a system of equations in Ki, Li, Ji(i =

0, 1, 2, 3, 4) and A,B,C,E,R1, R2, R3 , the solution of which gives the undetermined coefficients ( we have

omitted this lengthy process ). f(x, y, z, t) can be obtained as follows

f1(x, y, z, t) = E +B cosh[R1(
R2L1

R1
x− L2R2

R1
y − L2R2(R

2
2L

3
1+L4)

L1R1
z + R2L4

R1
t+K0)]

+B cosh[R2(L1x+ L2y +
L2(R

2
2L

3
1+L4)

L1
z + L4t+ L0)] + CP1(R3ξ), ξ = J2y +

J2(R
2
2L

3
1+L4)

L1
z + J0,

(9)

and

f2(x, y, z, t) = E +A cosh[R1(K1x− K1(R
2
1K

2
1J2−J3)

J2
t+K0)] +B cosh[R2(L2y +

L2J3

J2
z + L0)]

+CP2(R3η), η = J2y + J3z + J0,

(10)

where A,B,C,E,K0, L0, J0 and the coefficients of the variables x, y, z, t are constants, P1(R3ξ) and

P2(R3η) are functions of variables ξ = J2y+
J2(R

2
2L

3
1+L4)

L1
z+J0 or η = J2y+J3z+J0 , respectively. Then

the two solutions corresponding to Eq. (1) can be expressed as

u1(x, y, z, t) = −2BL1R2{sinh[R1(
R2L1

R1
x− L2R2

R1
y − L2R2(R

2
2L

3
1+L4)

L1R1
z + R2L4

R1
t+K0)]

+ sinh[R2(L1x+ L2y +
L2(R

2
2L

3
1+L4)

L1
z + L4t+ L0)]}/{E +B cosh[R1(

R2L1

R1
x− L2R2

R1
y

−L2R2(R
2
2L

3
1+L4)

L1R1
z + R2L4

R1
t+K0)] +B cosh[R2(L1x+ L2y +

L2(R
2
2L

3
1+L4)

L1
z + L4t+ L0)]

+CP1(R3(J2y +
J2(R

2
2L

3
1+L4)

L1
z + J0))},

(11)
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and

u2(x, y, z, t) = −2AK1R1 sinh[R1(K1x− K1(R
2
1K

2
1J2−J3)

J2
t+K0)]/{E +A cosh[R1(K1x

−K1(R
2
1K

2
1J2−J3)

J2
t+K0)] +B cosh[R2(L2y +

L2J3

J2
z + L0)] + CP2(R3(J2y + J3z + J0))},

(12)

where P1(R3(J2y +
J2(R

2
2L

3
1+L4)

L1
z + J0)) and P2(R3(J2y + J3z + J0)) are two arbitrary functions.

Case II : The second test function introduced is as follows

f(x, y, z, t) = E +A(K1x+K2y +K3z +K4t+K0)
2 +B(L1x+ L2y + L3z + L4t+ L0)

2

+CP (ξ), ξ = J1x+ J2y + J3z + J4t+ J0,

(13)

where Ki, Li, Ji(i = 0, 1, 2, 3, 4) and A,B,C,E are undetermined constants, and P (ξ) is an arbitrary

function about ξ. Similarly, substituting Eq. (13) into Eq. (4), f(x, y, z, t) can be obtained as follows

f1(x, y, z, t) = E − BL2
1

K2
1
(K1x+K2y +

K2L4

L1
z + K1L4

L1
t+K0)

2 +B(L1x+ L2y +
L2L4

L1
z + L4t+ L0)

2

+P (J2y +
J2L4

L1
z + J0),

(14)

and

f2(x, y, z, t) = E +A(K2y +
K2L4

L1
z +K0)

2 +B(L1x+ L4t+ L0)
2 + P (J2y +

J2L4

L1
z + J0), (15)

where A,B,E,K0, L0, J0 and the coefficients of the variables x, y, z, t are constants, P (J2y+
J2L4

L1
z+ J0)

is an arbitrary function. By substituting Eq. (14) and Eq. (15) into Eq. (2), the second set of solutions

to Eq. (1) can be expressed as follows

u3(x, y, z, t) = −4BL1[(L1x+ L2y +
L2L4

L1
z + L4t+ L0)− L1

K1
(K1x+K2y +

K2L4

L1
z + K1L4

L1
t

+K0)]/{E − BL2
1

K2
1
(K1x+K2y +

K2L4

L1
z + K1L4

L1
t+K0)

2 +B(L1x+ L2y +
L2L4

L1
z + L4t+ L0)

2

+P (J2y +
J2L4

L1
z + J0)},

(16)

and

u4(x, y, z, t) = − 4BL1(L1x+L4t+L0)

E+A(K2y+
K2L4
L1

z+K0)2+B(L1x+L4t+L0)2+P (J2y+
J2L4
L1

z+J0)
. (17)

3 Analysis of dynamics for some solutions

The diversity in the evolution of solutions, as observed in the context of the previous statements, the

presence of an arbitrary function and multiple parameters ‘explains’ the diversity. This complexity allows

for a wide range of possible outcomes, which can be described as follows: due to the incorporation of an

arbitrary function and a multitude of parameters, the solutions exhibit a rich variety of behaviors over

time. This diversity is a direct consequence of the flexibility introduced by the arbitrary function and

the interplay of multiple parameters, which can lead to a broad spectrum of dynamical responses.
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The following illustrates some structures corresponding to solutions with digital images. By plotting

these solutions against time or other relevant variables, we can observe how they evolve and interact

under different conditions. The visualizations provide insights into the stability, periodicity, or chaotic

tendencies of the solutions, offering a clear and intuitive understanding of their dynamical properties.

Case I : Three cases of u1(x, y, z, t) and their dynamical behavior in Eq. (11).

First, if setting P1(ξ) = cosh(R3(J2y +
J2(R

2
2L

3
1+L4)

L1
z + J0) and A = 2, B = 4, C = 20, E = 6,K0 =

0,K1 = 2, L0 = 0, L1 = 2, L2 = 5, L4 = 7, J0 = 0, J2 = 3, J3 = 1, R1 = 2i, R2 = 4i, R3 = 2 in u1(x, y, z, t)

, we get the following chain soliton solution

u5(x, y, z, t) = 32 sin(8x−20y+1210z+28t)+sin(8x+20y−1210z+28t)

3+10 cosh(3y− 363
2 z)+2 cos(8x−20y+1210z+28t)+2 cos(8x+20y−1210z+28t)

. (18)

Fig. 1: Chain soliton solution u5(x, y, z, t) at z = 0, t = 1.

Dynamical analysis of u5(x, y, z, t):

(i) Wave interference structure: Numerator “sin(8x−20y+1210z+28t)+sin(8x+20y−1210z+

28t)” describes bidirectional wave propagation, while the denominator combines hyperbolic localization

and phase-locked cosine terms.

(ii) Anisotropic propagation: Phase velocities satisfy vx = 3.5 (dominant) , vy = ±1.4 (shear),

vz ≈ ±0.023(confinement).

(iii) Stability mechanism: Temporal synchronization (T = 0.224) and spatial confinement by

‘10 cosh(3y − 363z/2)’stabilize the chain-soliton morphology.

To sum up, u5(x, y, z, t) embodies a 3D periodically localized wave structure formed by bidirectional

wave interference within a hyperbolic potential. Its dynamics are characterized by:

Anisotropic propagation (dominant x-direction transport); Spatiotemporal stability from phase-

locked interference ; High-dimensional confinement enabling chain-soliton morphology.

Secondly, by defining P1(ξ) = cosh(R3(J2y +
J2(R

2
2L

3
1+L4)

L1
z + J0), and the constants are given by:

A = 2, B = 4, C = 2, E = 12,K0 = 0,K1 = 2, L0 = 0, L1 = 2, L2 = 5, L4 = 7, J0 = 0, J2 = 3, J3 =

1, R1 = 2 i, R2 = 4 i, R3 = 2 i. By substituting these values into the function u1(x, y, z, t), the periodic
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Fig. 2: Three-wave solution u6(x, y, z, t) at z = 0, t = 1 .

three-wave solution can be obtained

u6(x, y, z, t) = 32 sin(8x−20y+1210z+28∗t)+sin(8x+20y−1210z+28t)
6+2 cos(8x−20y+1210z+28t)+2 cos(8x+20y−1210z+28t)+cos(6y−363z) .

(19)

Dynamical behavior of u6(x, y, z, t) :

The periodic three-wave solution achieves complex spatiotemporal structures through multi-phase

interference, and its core dynamics can be summarized as stable interference patterns formed by

directionally propagating periodic wave packets under nonlinear effects, with amplitude and propaga-

tion direction modulated by phase parameters. This rich dynamical behavior is vividly illustrated in

the periodic motion of waves depicted in Fig. 2, which reveals a dynamic pattern evolving simultaneously

along both the x-and y-axes. The wave amplitudes vary significantly across space and time, reflecting the

intricate balance between constructive and destructive interferences mediated by phase coherence. Such

a phenomenon bears a striking resemblance to fluctuating sea waves during a storm—where large swells

and smaller ripples coexist and interact chaotically—yet here, the apparent complexity emerges from an

underlying order: a coherent, nonlinearly sustained wavefront governed by deterministic equations. Thus,

while the system exhibits visually turbulent and ever-changing profiles, it remains anchored in stable,

repeating patterns that are sensitive to initial phase configurations, highlighting the profound interplay

between nonlinearity, dispersion, and interference in shaping multidimensional wave dynamics.

Thirdly, when the function P1(ξ) = cosh(R3(J2y +
J2(R

2
2L

3
1+L4)

L1
z + J0)) and r = R1 = R2 = R3 are

set within the function u1(x, y, z, t) and the condition E+2B+C = 0 holds with r → 0, a lump solution

can be derived as follows

u7(x, y, z, t) =

−32BL3
1(4L1x+4L4t+K0+2L0)

4B(2L2
1x−2L2L1y−2L2L4z+2L4L1t+K0L1)2+16B(L2

1x+L2L1y+L2L4z+L4L1t+L0L1)2+9C(J2L1y+J2L4z+J0L1)2
.

(20)

Specifically, when the parameters are set as follows: B = 4, C = 2,K0 = 0, L0 = 0, L1 = 2, L2 =

5, L4 = 7, J0 = 0, J2 = 3, J3 = 1, the corresponding solution is illustrated in Fig.3. Upon examining
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Fig. 3: Lump solution u7(x, y, z, t) at z = 1, t = 1.

Fig.3, it is evident that the solution represents a classic example of a rogue wave solution formed by

rational functions.

Dynamical behavior of u7(x, y, z, t) :

The dynamic behavior of the solution is mainly reflected in three aspects: locality, interaction mode,

and spatiotemporal evolution.

(i) Localization mechanism : The Lump solution is constructed through a bilinear form, satisfying

analyticity and rational localization conditions to ensure energy concentration in a limited region.

(ii) Nature of interaction : When the Lump wave interacts with line solitons, nonlinear effects

lead to waveform fusion or fission, but the total energy is conserved.

(iii) Spatiotemporal evolution : Adjusting equation parameters (such as propagation speed and

amplitude coefficient) can change the trajectory of Lump solutions.

In the analysis of the evolution of the function u1(x, y, z, t), the values of the parameters A,B,C and

E play a crucial role in determining the nature of the solution. Specifically, the solution may exhibit

singular behavior depending on these values. To ensure that the function f(x, y, z, t) does not vanish, it

is common practice to select a sufficiently large value for E and relatively small values for A,B and C.

Case II : Three cases of u2(x, y, z, t) and their digital images in Eq. (12).

Firstly, if setting P2(R3η) = R3(J2y + J3z + J0)
2 and A = 2, B = 4, C = 2, E = 20,K0 = 0,K1 =

2, L0 = 0, L2 = 5, , J0 = 0, J2 = 3, J3 = 1, R1 = 2 i, R2 = 4 i, R3 = 2 in u1(x, y, z, t) , we can obtain the

following periodic lump solution

u8(x, y, z, t) =
8 sin(4x+ 196

3 t)

10+cos(4x+ 196
3 t)+2 cos(20y+ 20

3 z)+2(3y+z)2
. (21)

Dynamical behavior of u8(x, y, z, t) :

(i) Traveling wave in x, t : The solution propagates periodically in the x-direction with velocity

vx = − 49
3 , maintaining its shape over time.

(ii) Periodic in y, z: Oscillations in y, z due to the cosine term, but modulated by the quadratic

term to form a localized lump.
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Fig. 4: Periodic lump solution u8(x, y, z, t) at z = 1, t = 1.

(iii) Stability: The denominator’s non-vanishing nature (minimum value 10 − 1 − 2 + 0 = 7 when

cosines = −1 and 3y + z = 0) ensures the solution remains bounded and smooth, indicating stability.

Briefly describe: The periodic lump solution exhibits combined periodic traveling wave behavior

in x, t and localized lump structure in y, z, characteristic of a stable, bounded nonlinear wave in the

(3+1)-dimensional generalized shallow water wave system.

Fig. 5: Periodic lump solution u9(x, y, z, t) at z = 1, t = 1.

Secondly, by defining P2(R3η) = R3(J2y + J3z + J0)
6, and keeping all other parameters consistent

with those of u8(x, y, z, t) , one can derive another periodic lump solution

u9(x, y, z, t) =
8 sin(4x+ 196

3 t)

12+cos(4x+ 196
3 t)+2 cos(20y+ 20

3 z)+2(3y+z)6
. (22)

Comparison of Fig. 5 with Fig. 4 reveals that Fig. 5 displays a periodic lump solution that exhibits

more pronounced oscillations in the y-direction.

Thirdly, when the function P2(R3η) = cosh(R3(J2y + J3z + J0))
2 and A = 2, B = 4, C = 2, E =

6,K0 = 0,K1 = 2, L0 = 0, L2 = 5, , J0 = 0, J2 = 3, J3 = 1, R1 = 2 i, R2 = 4, R3 = 2 are set within the

function u2(x, y, z, t), we get the following periodic soliton solution(breather solitary waves)

u10(x, y, z, t) =
8 sin(4x+ 196

3 t)

3+cos(4x+ 196
3 t)+2 cosh(20y+ 20

3 z)+cosh(6y+2z)2
. (23)
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Fig. 6: Periodic soliton solution u10(x, y, z, t) at z = 1, t = 1.

Dynamical behavior of u10(x, y, z, t) :

(i) Temporal evolution: The solution oscillates periodically in x and propagates in the −x direction

with velocity vx = −49
3 .

(ii) Spatial structure: Remains localized in the y − z plane along 3y + z = C, with no dispersion

(shape preserved over time).

(iii) Amplitude: Modulated by the periodic sin term, leading to oscillating peaks in the x−direction

while maintaining localization in y − z.

Briefly describe: The solution is a periodic lump soliton with periodic oscillations in the x− t plane

and exponential localization in the y − z plane, propagating in the −x direction without dispersion.

Similarly, an analysis can be conducted to explore the properties of the solutions u3(x, y, z, t) and

u4(x, y, z, t), These solutions exhibit lump-shaped profiles, yet they experience oscillations attributed to

the function P (J2y +
J2L4

L1
z + J0). However, a detailed analysis is not provided in this context.

4 Conclusion

This study has established two new families of three-wave-hybrid solutions for the (3+1)D

generalized shallow water wave equation. The solutions incorporate arbitrary functions and multiple

parameters, generating diverse wave structures including: Chain-solitons, Periodic three-wave pat-

terns, Rogue wave lumps. These results significantly extend the known solution space and provide

deeper insights into nonlinear wave dynamics. The dynamical characteristics of these partial solutions

provide a more accurate representation of wave propagation on the water surface, thereby illuminates a

multitude of nonlinear phenomena. This method is not only innovative but also versatile, as it can be

extended to other multi-dimensional nonlinear equations, offering a broad scope for further exploration

and application in the field of nonlinear dynamics.
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