Journal of Electronics and Information Technology(1009-5896) || Volume 25 Issue 11 2025

Enhanced Malicious URL Detection using Hybrid Deep Learning and
Ensemble Models

Dr D Suresh Babu, Associate Professor of Computer Science
Pingle Government College for Women (A) Hanumakonda Telangana

K Aruna Assistant Professor Computer Science, Kakatiya Government College,

Hanumakonda Telangana
Abstract
With the exponential growth of the internet, cyber threats such as malicious URLs have

emerged as a critical challenge in cybersecurity. Traditional blacklisting methods fail to detect
newly generated or obfuscated URLs. This paper introduces an advanced hybrid deep learning
and ensemble-based framework for detecting malicious URLs. The proposed system combines
Convolutional Neural Networks (CNN) for lexical feature learning with a Random Forest
ensemble to refine classification accuracy. The hybrid model captures structural, lexical, and
behavioral attributes of URLs, enabling a comprehensive analysis. The proposed approach
achieves superior accuracy, precision, and recall compared to conventional methods. The system
is deployed via a Flask-based web application that performs real-time analysis and classification
of URLs as safe or malicious. Experimental results demonstrate a detection accuracy of 98.7%,
showcasing the potential of hybrid Al models in fortifying modern cybersecurity frameworks.

1. Introduction

The exponential expansion of the digital ecosystem has transformed how individuals,
organizations, and governments interact online. However, this growth has also amplified
exposure to cyber threats, with malicious URLs emerging as one of the most pervasive attack
vectors in the modern cybersecurity landscape. These URLs are often used as gateways for
phishing, ransomware deployment, data theft, and other malicious activities. By disguising
harmful links within legitimate-looking domains, adversaries exploit user trust and traditional
security blind spots.

Conventional approaches to malicious URL detection—such as rule-based systems,
blacklisting, and heuristic matching—have become increasingly inadequate. Blacklists, though
simple and widely used, fail to identify newly generated or dynamically obfuscated URLs. Rule-
based detection methods, meanwhile, rely on manually defined patterns that cannot adapt quickly
enough to the evolving tactics of cybercriminals. This lack of adaptability underscores the
necessity of intelligent, data-driven detection mechanisms capable of learning and generalizing
from vast, complex datasets.

Machine learning (ML) and deep learning (DL) techniques have revolutionized this
domain by enabling automated detection systems that can dynamically identify malicious
patterns. Supervised algorithms such as Random Forest (RF), Support Vector Machines (SVM),
and Gradient Boosting have been successfully applied to classify URLs based on lexical and
host-based features. More recently, deep learning models—particularly Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs)—have demonstrated an exceptional
capacity to learn hierarchical representations of textual structures, thereby improving
classification performance. Despite these advances, each approach has limitations: traditional

©Scopus/Elsevier Page No: 190 Journaleit.org

Journal of Electronics and Information Technology(1009-5896) || Volume 25 Issue 11 2025

ML models struggle with complex feature dependencies, while DL models, though powerful,
often lack interpretability and require extensive computational resources.

To bridge these gaps, this research introduces a hybrid deep learning and ensemble
framework for malicious URL detection. The proposed system integrates the feature-learning
strength of CNNs with the interpretability and stability of Random Forests. This hybridization
allows the model to leverage both data-driven feature extraction and ensemble decision-making,
resulting in superior accuracy and generalization across diverse URL datasets. Moreover, the
framework emphasizes real-world applicability by deploying the trained model within a Flask-
based web interface, allowing users to assess URL safety in real time.

The primary contributions of this study are as follows:

1. Hybrid CNN-Random Forest Model: A novel two-stage architecture that combines
deep feature representation with ensemble-based classification for improved detection
performance.

2. Comprehensive Feature Engineering: Integration of lexical, structural, and character-
level features to capture the intrinsic behavioral patterns of malicious URLs.

3. Deployment-Ready System: Implementation of a real-time Flask web application for
practical URL analysis and user protection.

4. Extensive Evaluation: Experimental validation using a large-scale dataset to benchmark
accuracy, precision, recall, and AUC metrics against existing methods.

In summary, this paper aims to advance the state of malicious URL detection by
presenting a robust, scalable, and interpretable hybrid framework that addresses the
shortcomings of traditional methods while contributing to the broader goal of enhancing
cybersecurity resilience in a digitally interconnected world.

2. Literature Review

The detection of malicious URLs has evolved significantly over the past decade, with
researchers exploring diverse machine learning and deep learning approaches to enhance
cybersecurity defenses. Traditional detection methods—such as URL blacklisting, rule-based
filtering, and signature matching—were once effective but are now inadequate against
dynamically generated, obfuscated, and polymorphic URLs. As a result, the research community
has shifted toward adaptive, data-driven techniques capable of learning intricate patterns in URL
structures, content, and network behaviors.

Machine Learning Approaches:

Several studies have applied classical machine learning algorithms to detect malicious
URLs. Malak et al. (2023) demonstrated that models such as Random Forest (RF) and Support
Vector Machines (SVM) outperform static blacklists by leveraging lexical and host-based
features. However, their findings also highlighted limitations in handling zero-day URLs and
those employing sophisticated obfuscation. Similarly, He et al. (2020) proposed hyperparameter-
tuned Random Forest classifiers that achieved high accuracy, yet their dependence on static
feature sets restricted adaptability. Lee et al. (2019) integrated optimization algorithms with ML
classifiers to refine feature selection and improve robustness, but scalability remained an issue
for real-time applications.

Deep Learning Approaches:

©Scopus/Elsevier Page No: 191 Journaleit.org

Journal of Electronics and Information Technology(1009-5896) || Volume 25 Issue 11 2025

With the advancement of neural architectures, deep learning has become a powerful tool
in URL classification. Yuan et al. (2020) introduced a convolutional neural network (CNN)-
based framework that automatically learns discriminative features from URL strings without
manual preprocessing. Their work demonstrated superior accuracy and generalization compared
to traditional ML models. Similarly, Raja et al. (2021) proposed a deep neural architecture that
combines recurrent neural networks (RNNs) and long short-term memory (LSTM) layers to
capture sequential dependencies in URL tokens. These models, while accurate, often suffer from
high computational complexity and lack interpretability—making them challenging to deploy in
resource-constrained environments.

Hybrid and Ensemble Techniques:

Recognizing the complementary strengths of different algorithms, researchers have
explored hybrid and ensemble models to achieve balance between accuracy and interpretability.
Reyes-Dorta et al. (2024) developed a hybrid detection system integrating feature-based ML
classifiers with content-level analysis, resulting in improved detection precision for phishing
URLs. Aljabri et al. (2023) proposed combining deep and shallow learning layers for improved
resilience against zero-day attacks. More recently, quantum machine learning (QML) techniques
have been investigated (Do et al., 2020), offering faster pattern recognition for large-scale
datasets, though their real-world application remains nascent.

Feature Engineering and Dataset Challenges:

Feature extraction remains a cornerstone of effective malicious URL detection.
Commonly used features include lexical attributes (e.g., URL length, character frequency,
entropy), host-based features (e.g., IP addresses, WHOIS data), and content-based indicators
(e.g., HTML tags, JavaScript behavior). Wejinya and Bhatia (2020) emphasized that the choice
of features directly influences classifier performance. However, dataset diversity remains a
persistent challenge—many models are trained on limited or outdated datasets, reducing their
generalization capability in real-world scenarios. The scarcity of multilingual and region-specific
datasets (e.g., URLs in Arabic or Hindi scripts) further constrains detection accuracy across
global web contexts.

Research Gaps and Motivation:

While existing research has established a strong foundation for machine learning—based
malicious URL detection, several gaps persist. First, most models emphasize either accuracy or
interpretability but fail to optimize both simultaneously. Second, the dynamic and adversarial
nature of malicious URL generation demands adaptive systems capable of real-time learning.
Third, the majority of current studies evaluate performance in controlled environments, lacking
deployment-ready validation. To address these limitations, this paper introduces a hybrid CNN—
Random Forest architecture that unifies deep representation learning with ensemble-based
interpretability, achieving a balance between computational efficiency and predictive power. The
proposed system further integrates real-time web deployment to ensure practical usability and
scalability in real-world cybersecurity contexts.

3. Proposed Methodology

The proposed methodology introduces a hybrid deep learning and ensemble-based
architecture designed to detect malicious URLs with high precision, interpretability, and
scalability. The approach integrates the feature extraction capabilities of Convolutional Neural
Networks (CNN) with the decision robustness of a Random Forest (RF) classifier. This dual-
stage system ensures both deep semantic learning and explainable ensemble-based classification,
addressing the weaknesses of conventional single-model solutions.

©Scopus/Elsevier Page No: 192 Journaleit.org

Journal of Electronics and Information Technology(1009-5896) || Volume 25 Issue 11 2025

3.1 System Qverview:

The overall workflow of the proposed framework comprises five primary stages:
Data Acquisition and Preprocessing

Feature Extraction and Representation

Hybrid Model Architecture (CNN + RF)

Training and Optimization

5. Web Application Deployment for Real-Time Analysis

b s

Each component is modularly designed to ensure scalability, maintainability, and integration
with other cybersecurity infrastructure.

3.2 Data Acquisition and Preprocessing:

The dataset utilized for experimentation consists of a balanced mix of benign and malicious
URLs, collected from open repositories such as PhishTank, Kaggle, and OpenDNS.
To ensure data consistency and eliminate bias, preprocessing steps include:

o Normalization of URLSs (case folding, removal of redundant parameters).

e Tokenization of URL strings into subdomains, paths, and query parameters.

o Removal of duplicates and noise, ensuring the dataset represents real-world diversity.

o Label encoding to map malicious and benign URLs to binary classes (1 = malicious, 0 =

benign).

The dataset is partitioned into 80% for training and 20% for validation/testing, using
stratified sampling to maintain class distribution.

3.3 Feature Extraction and Representation:

Feature engineering is central to the model’s performance. The framework employs both
lexical and semantic features derived from the URL string, complemented by host-based
indicators.

Lexical Features:
e URL length, number of dots, hyphens, and slashes

Presence of special characters (e.g., “?”, “@”, “=", “%”)

o Count of digits, capital letters, and suspicious tokens (e.g., “login”, “secure”, “verify”)
e Presence of IP address instead of domain name
Semantic Features (CNN-based):

The CNN component transforms each URL into a character-level embedding sequence,
allowing the network to learn complex local patterns. Each character is represented as an integer
index and converted into a fixed-size embedding vector.The CNN layers apply multiple
convolutional filters with varying kernel sizes (e.g., 3, 5, 7) to capture n-gram level
dependencies. Max-pooling is used to retain the most significant features, followed by flattening
to produce a dense vector representation of the URL.

This dense vector, representing deep structural semantics, is then passed to the Random
Forest classifier for final decision-making.

3.4 Hybrid CNN—Random Forest Architecture

The hybrid model integrates deep learning and ensemble-based decision logic in a two-phase
pipeline:
1. Phase I: Deep Feature Learning via CNN
The CNN model learns abstract representations from raw URLs without manual feature
extraction. It captures subtle lexical irregularities, token co-occurrences, and structural
anomalies associated with malicious URLs.

©Scopus/Elsevier Page No: 193 Journaleit.org

Journal of Electronics and Information Technology(1009-5896) || Volume 25 Issue 11 2025

2. Phase II: Ensemble Classification via Random Forest
The learned features are fed into a Random Forest classifier, which aggregates multiple
decision trees to deliver robust and interpretable predictions.
The ensemble mechanism minimizes overfitting and enhances the generalization of the
system, making it suitable for unseen URL patterns.
The hybridization ensures that the CNN handles complex feature discovery, while the
Random Forest provides interpretability and high precision under varying threat contexts.

3.5 Model Training and Hyperparameter Optimization

Model training is performed using TensorFlow and Scikit-learn libraries.

e CNN Training: The network is trained with a batch size of 64 for 30 epochs, using
Adam optimizer and binary cross-entropy loss.

o Feature Extraction: The output of the penultimate dense layer (512-dimensional vector)
is exported as the CNN feature embedding.

e Random Forest Training: The extracted embeddings are used to train the RF classifier
with 200 estimators and a maximum depth of 30. Hyperparameters are tuned using Grid
Search Cross-Validation to optimize precision, recall, and AUC metrics.

Early stopping and dropout regularization (rate = 0.3) are employed to prevent overfitting

and improve model generalization.

3.6 Deployment and Real-Time Detection

To enable practical usability, the hybrid model is integrated into a Flask-based web
application.

o Frontend: A lightweight HTML/JavaScript interface allows users to input URLs.

o Backend: The Flask server processes the input, performs preprocessing, feature

extraction, and classification using the trained hybrid model.

e Output: The result is displayed as “Safe” or “Malicious,” along with a confidence score.

Additionally, a logging mechanism stores detection results for model retraining and
continuous improvement. The modular design supports API integration for browser extensions,
enterprise systems, and threat intelligence platforms.

3.7 Algorithmic Flow:

Step 1: Accept user input (URL) — Preprocessing

Step 2: Extract lexical and semantic features — CNN Encoding
Step 3: Pass learned representation to Random Forest Classifier
Step 4: Output classification result and confidence score

Step 5: Log detection for retraining and performance tracking
3.8 Advantages of the Proposed Framework:

o Combines deep representation learning with ensemble interpretability
e (Capable of detecting zero-day and obfuscated URLSs

e Provides real-time prediction with minimal latency

o Scalable for large-scale enterprise cybersecurity systems

o Easily extendable for integration with threat intelligence APIs

©Scopus/Elsevier Page No: 194 Journaleit.org

Journal of Electronics and Information Technology(1009-5896) || Volume 25 Issue 11 2025

Proposed Methodology - Hybrid CNN + Random Forest Model
4 N\
Data Acquisition
& Preprocessing
|
e ; ~
Feature Extraction
(Lexical + Semantic)
|
e i ~
CNN Feature Learning
(Character-level embeddings)
|
r i ~
Random Forest
Ensemble Classification
|
r i ~
Prediction Output
(Safe / Malicious)
|
s 7 ~
Flask Web Deployment
Real-time Analysis
AN _/

4. Implementation and System Architecture

The implementation of the proposed hybrid malicious URL detection framework
integrates data-driven model training with a robust and scalable system architecture. This design
ensures efficient processing, real-time detection, and user accessibility through a web-based
interface. The implementation pipeline consists of data preprocessing, hybrid model training
(CNN + RF), and deployment through a Flask-based application, ensuring end-to-end
functionality from data ingestion to threat prediction.

4.1 System Architecture Overview:
The overall system is structured as a multi-tier architecture comprising the following layers:
1. Data Layer:
Responsible for acquiring, cleaning, and storing URL datasets. Datasets are collected
from open repositories such as PhishTank, Kaggle, and VirusShare, containing labeled
benign and malicious URLs. The layer implements normalization, encoding, and feature
storage operations using Pandas and SQLite3.
2. Processing and Analytics Layer:
This core layer executes feature extraction, deep learning-based representation, and
ensemble classification. It includes two primary components:

o Feature Extraction Module: Uses t/dextract, regex, and scikit-learn utilities to
extract lexical (Iength, entropy, special characters) and semantic (token sequence
embeddings) features.

o Hybrid Model Engine: A dual-stage classifier combining a CNN for deep
feature learning and a Random Forest (RF) ensemble for final classification.

3. Application Layer (Flask Server):
The Flask backend integrates the trained hybrid model and serves API endpoints for URL
analysis. Incoming URLs are processed in real time, and classification results are
returned to the client interface. The backend also maintains logs for monitoring and
retraining.

©Scopus/Elsevier Page No: 195 Journaleit.org

Journal of Electronics and Information Technology(1009-5896) || Volume 25 Issue 11 2025

4. User Interface Layer (Frontend):
The user interface, developed using HTMLS, CSS, and JavaScript, provides a simple
yet interactive platform where users can input URLs. It communicates asynchronously
with the Flask backend using AJAX requests, allowing real-time feedback without page
reloads.

5. Monitoring and Feedback Layer:
This layer handles data logging, user query tracking, and periodic model performance
evaluation. The feedback data is used to retrain and fine-tune the model, ensuring
adaptive learning against evolving URL attack patterns.

4.2 Model Implementation Details:
1. CNN Implementation:
o Framework: TensorFlow and Keras
o Input Representation: Each URL is converted into a sequence of integer-
encoded characters.
o Architecture:
= Embedding layer: 128 dimensions
= Convolutional layers: 3 filters (3%3, 5x5, 7x7 kernel sizes)
= Max-pooling and dropout layers to reduce overfitting
= Dense layer (512 units, ReLU activation)
o Output: 512-dimensional embedding representing semantic structure of the URL.
2. Random Forest Implementation:
o Framework: Scikit-learn
o Parameters: 200 estimators, max depth = 30, bootstrap enabled
o Training Data: CNN feature embeddings + engineered lexical features
o Output: Binary classification (1 = Malicious, 0 = Benign)
3. Integration Logic:
The CNN acts as a feature generator, producing a vector representation of the input
URL. These embeddings, concatenated with handcrafted lexical features, are passed to
the Random Forest classifier. This hybridization allows the model to combine semantic
and structural insights for robust decision-making.

4.3 Deployment through Flask Web Application
The hybrid detection model is deployed as a Flask-based web service for real-time
malicious URL analysis. The architecture supports both manual user inputs and automated API
queries.
o Backend Workflow:
o Accepts URL input through an HTTP POST request.
o Preprocesses the input, tokenizes it, and extracts features.
o Passes the features to the CNN—-RF model for classification.
o Returns a JSON response with classification result and confidence score.
e Frontend Workflow:
o Accepts user input through an intuitive dashboard.
o Displays results as “Safe” (green) or “Malicious” (red) with risk-level indicators.
o Stores recent results locally for user reference.
The Flask server runs in a containerized environment (Docker) for portability and
scalability, enabling easy deployment across cloud platforms like AWS, Azure, or Google Cloud.

4.4 Performance Monitoring and Model Retraining:

A built-in performance tracking module continuously evaluates metrics such as:

©Scopus/Elsevier Page No: 196 Journaleit.org

Journal of Electronics and Information Technology(1009-5896) || Volume 25 Issue 11 2025

e Number of URLS processed

o Detection accuracy and false-positive rate

e Feature importance analysis

o Real-time latency measurements

Periodic retraining is triggered when the performance threshold falls below 95% accuracy,
ensuring the model remains adaptive to evolving cyber threats. The retraining pipeline is
automated using cron jobs that periodically fetch new data and update the model weights.

4.5 System Security and Usability Considerations:

To safeguard the system itself, the following measures are implemented:
o Input Validation: All URLs are sanitized before analysis to prevent injection attacks.
e Secure APIs: HTTPS-based endpoints with authentication tokens for external requests.
e Scalability: Asynchronous processing queues using Celery for high-traffic environments.
e User Privacy: No personally identifiable information (PII) is stored.

The system emphasizes accuracy, speed, and security, ensuring that both individual users
and organizations can rely on the framework for real-time URL safety evaluation

Multi-Tier System Architecture for Hybrid Malicious URL Detection
- ™

User Interface Layer
(HTML, CS5, JS)

- ¥ ~
Application Layer
(Flask Server, REST API)

r [Y

Processing & Analytics Layer
(CNN + Random Forest Model)

- $ ~
Data Layer
(Datasets, SQLite Storage)

r v _"1

Monitoring & Feedback Layer
(Logging, Model Retraining)

5. Results and Discussion

The evaluation of the proposed hybrid CNN-Random Forest model was conducted
through comprehensive experiments to assess its performance, robustness, and generalization
ability in detecting malicious URLs. This section presents quantitative results, comparative
performance with baseline models, and interpretive insights demonstrating the superiority of the
proposed approach.

5.1 Experimental Setup

The experiments were carried out using a high-performance computing environment

The dataset comprised 200,000 labeled URLs, equally split between benign and
malicious samples. Data were randomly divided into 80% training, 10% validation, and 10%
testing subsets using stratified sampling to preserve label distribution.

©Scopus/Elsevier Page No: 197 Journaleit.org

Journal of Electronics and Information Technology(1009-5896) || Volume 25 Issue 11 2025

5.2 Evaluation Metrics

Performance was assessed using standard classification metrics widely adopted in
cybersecurity and machine learning research:

TP + TN

Accuracy —

Precision —

Recall =

TP+ TN + FP + FN

TP

TP + FP
TP

TP + FN

Precision x Recall

Fl1=2x

Precision + Recall

Where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false

negatives, respectively.

5.3 Comparative Analysis

Table 1 compares the performance of the proposed Hybrid CNN-RF model against
traditional and standalone deep learning baselines

Accuracy Precision Recall || F1 Score

Model (%) (%) (%) (%) AUC
ILogistic Regression 190.5 189.2 lo1.4 [903 0.89 |
Support Vector Machine (SVM) 92.8 91.7 93.0 92.3 0.91
‘Random Forest (Standalone) H94.8 H95.1 H94.5 H94.8 H0.95 ‘
Convolutional Neural Network
(CNN) 96.2 96.0 95.8 95.9 0.97
Proposed CNN-Random Forest 98.7 98.4 98.9 98.6 0.992
(Hybrid))))))

Table 1: Comparative Performance Analysis of Malicious URL Detection Models
The proposed hybrid model achieved a 2.5-4% improvement in overall accuracy
compared to standalone CNN and RF models. The integration of CNN’s deep feature learning
with the Random Forest’s ensemble robustness led to enhanced interpretability and reduction of

false positives.

5.4 Confusion Matrix and ROC Curve Analysis:

The confusion matrix for the hybrid model demonstrated high classification accuracy,
with 98.9% of malicious URLs correctly identified. False negatives were reduced to less than
1.2%, indicating strong sensitivity toward phishing and malware-based URLs.

The ROC curve exhibited an AUC value of 0.992, confirming superior discrimination
capability between benign and malicious classes. This high AUC value signifies the hybrid
model’s ability to balance sensitivity (true positive rate) and specificity (true negative rate)
effectively, even under noisy and adversarial URL inputs.

5.5 Feature Importance Analysis

To enhance interpretability, the Random Forest layer’s feature importance analysis revealed

the following key contributors:

©Scopus/Elsevier

Page No

1198

Journaleit.org

Journal of Electronics and Information Technology(1009-5896) || Volume 25 Issue 11 2025

e URL length and entropy — indicators of obfuscation and randomization techniques.
o Presence of special symbols and encoded strings — often used in phishing attempts.
o [P address usage and subdomain depth — common in malicious or spoofed domains.
e Token frequency of sensitive words (“login”, “bank”, “secure”) — associated with
phishing campaigns.
This interpretability reinforces the hybrid model’s explainability, an essential factor for real-
world cybersecurity deployment.

5.6 Comparative Discussion:

Compared with existing works, the proposed hybrid model offers several distinct advantages:
1. Generalization: Maintains high accuracy across unseen datasets with minimal retraining.
2. Efficiency: Reduces computation time by ~20% due to CNN feature reuse.
3. Robustness: Outperforms deep-only models in detecting obfuscated and polymorphic
URLs.
4. Interpretability: Random Forest layer allows explanation of decision-making,
supporting trust in Al-driven cybersecurity systems.
These findings demonstrate that hybrid deep learning—ensemble architectures are well-suited
for modern threat landscapes, where malicious URLs evolve rapidly and vary in structure.

5.7 Practical Impact and Real-World Relevance:

The integration of the hybrid model into a Flask-based web interface enables real-time,
user-accessible URL verification. The system classifies incoming URLs in under 200
milliseconds, making it ideal for browser plugin deployment or integration into enterprise-level
intrusion detection systems.

The low false-positive rate ensures minimal disruption to legitimate traffic, which is a
key metric for operational cybersecurity tools.

5.8 Summary of Findings:

The hybrid CNN-Random Forest model not only demonstrates state-of-the-art
performance in malicious URL detection but also ensures explainability, scalability, and
deployability. Its balanced design addresses both technical and operational gaps observed in
prior research, confirming its potential for large-scale adoption in proactive threat detection
frameworks.

6. Future Work :

While the proposed hybrid CNN-Random Forest framework demonstrates exceptional
performance and scalability, several research directions can further enhance its capabilities and
real-world impact.

1. Integration of Transformer Architectures:

Future work can incorporate Transformer-based language models (e.g., BERT,
RoBERTa, or XLNet) to capture contextual semantics from URL structures and
associated metadata. These models can interpret subtle relationships among URL
components, improving detection of adversarially crafted malicious links.

2. Federated and Continual Learning:

Implementing federated learning architectures would enable distributed detection across
multiple clients without centralizing data, thus preserving user privacy. Continual
learning mechanisms could allow the model to adapt dynamically to new attack patterns,
addressing the non-stationary nature of web-based threats.

©Scopus/Elsevier Page No: 199 Journaleit.org

Journal of Electronics and Information Technology(1009-5896) || Volume 25 Issue 11 2025

3. Multimodal Threat Intelligence Integration:

Combining lexical and structural features with network-level data (e.g., DNS lookup
times, SSL certificate attributes, or packet-level behaviors) would enrich the model’s
context-awareness and enhance prediction reliability. Integration with global cyber threat
feeds can also facilitate real-time updates.

4. Adversarial Robustness and Explainable Al (XAI):

[

Future iterations of the model should incorporate adversarial training to resist evasion
attacks and enhance resilience against synthetic data manipulation. Additionally,
explainable Al (XAI) frameworks such as SHAP or LIME can be used to generate
human-interpretable explanations for classification results, fostering user trust and
transparency.

5. Scalable Deployment and Edge Computing:

Expanding the deployment to cloud-edge hybrid environments will enable real-time
malicious URL detection in latency-sensitive applications, such as IoT systems and
mobile browsers. API-based integration with enterprise security infrastructures will also
[promote large-scale adoption.

6. Cross-Language and Multilingual URL Analysis:

Current datasets are predominantly in English. Future work should explore multilingual
URL detection models capable of handling URLs containing Arabic, Cyrillic, or
Unicode-based obfuscations, thereby improving global applicability.

By pursuing these directions, the framework can evolve into a holistic, intelligent cyber defense
system capable of detecting, explaining, and preventing diverse forms of web-based attacks.

7. Conclusion

This research presented a hybrid deep learning and ensemble-based framework for
the detection of malicious URLs, integrating the representational power of Convolutional
Neural Networks (CNN) with the interpretability and decision stability of a Random Forest
(RF) classifier. The proposed model achieved a remarkable 98.7% detection accuracy and
demonstrated superior precision and recall compared to conventional approaches.

The study’s contributions are threefold: (1) it proposes a robust and explainable hybrid
model that fuses deep and traditional learning paradigms; (2) it implements an end-to-end
detection pipeline deployable in real-time web environments; and (3) it validates performance
through extensive experimentation and interpretive analysis.By incorporating advanced feature
engineering and real-time Flask deployment, the framework proves adaptable to evolving cyber
threat landscapes while maintaining transparency and speed.

Overall, this work advances the field of intelligent threat detection by bridging the gap
between high-accuracy Al models and real-world operational usability. The results underscore
the transformative potential of hybrid AI systems in cybersecurity — systems that not only
detect threats but also evolve with them, laying the groundwork for next-generation proactive
defense mechanisms.

©Scopus/Elsevier Page No: 200 Journaleit.org

Journal of Electronics and Information Technology(1009-5896) || Volume 25 Issue 11 2025

8. References :

1.

2.

10.

M. Malak, S. Alzahrani, and H. Kanaan, “Machine Learning for Malicious URL
Detection: A Comparative Study,” IEEE Access, vol. 11, pp. 10045—-10058, 2023.

E. Reyes-Dorta, J. Gonzalez, and P. Mejia, “Feature-Based URL Analysis for Cyber
Threat Detection,” Wireless Networks, Springer, 2024.

A. Aljabri, A. Omar, and F. Al-Mamun, “Deep and Hybrid Learning Techniques for
Phishing URL Detection,” IEEE Transactions on Information Forensics and Security,
vol. 18, pp. 212-224, 2023.

H. Do, T. Kim, and K. Lee, “Quantum Machine Learning for Malicious URL Detection,”
Journal of Network Security and Applications, vol. 25, no. 4, pp. 405418, 2020.

S. Wejinya and R. Bhatia, “Machine Learning Algorithms for Malicious URL
Detection,” International Journal of Advanced Research in Computer Communication
Engineering, vol. 8, no. 3, pp. 1012-1019, 2020.

Y. He, D. Zhang, and Z. Zhao, “Optimized Random Forest Classifier for Detecting
Malicious URLs,” IEEE Transactions on Cybernetics, vol. 50, no. 11, pp. 4587-4599,
2020.

Y. Yuan, H. Xue, and J. Lin, “Deep Learning for Phishing and Malicious URL
Detection,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 2452—
2464, 2020.

J. Lee, S. Park, and D. Choi, “Optimization-Enhanced ML Models for Real-Time Threat
Identification,” International Journal of Electrical and Computer Systems, vol. 14, no. 2,
pp. 154-166, 2019.

A. Raja, V. Tiwari, and P. Sinha, “Deep Neural Network-Based Framework for
Malicious URL Detection,” Materials Today.: Proceedings, Elsevier, vol. 48, pp. 725—
733, 2021.

G. Thomas, P. Sharma, and R. Nair, “Lightweight Ensemble Learning for Phishing and
Malware URL Detection,” IJARCCE, vol. 8, no. 3, pp. 421-427, 2019.

©Scopus/Elsevier Page No: 201 Journaleit.org

