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1. Introduction and Preliminaries
Fixed point theory is a branch of mathematics that deals with the study of mappings that have
points that remain unchanged under the mapping process. It provides powerful tools and
techniques for analyzing the existence, uniqueness, and stability of fixed points in different
settings. Fixed point theory has found applications in diverse fields.
One of the most fundamental theorems in fixed point theory is the Banach fixed point
theorem [3], also known as the contraction mapping principle. This theorem has numerous
applications in areas such as functional analysis, numerical analysis, differential equations,
game theory etc. Stefan Banach valuable work has been built by generalizing the metric
conditions or by imposing conditions on the metric spaces (see [1-18]).
In this manuscript, we expand the concept of generalized altering distance function and
introduced a generalized (af — B¢) —contractive mappings and give fixed point theorems
for such contractions in metric spaces.
Khan et al. [11] use a control function (altering distance function) they referred to as a
changing distance function allowed them to tackle new fixed point problems.
“Definition 1.1. [11] A function f : [0, ) = [0, o) is called an altering distance function if
the following properties are satisfied

(1) £(0) =0ifand onlyift =0,

(ii) f is continuous and monotonically non-decreasing.”
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We first recall the auxiliary functions that we shall use effectively.
“Definition 1.2. Let K be a set, and let R be a binary relation on K. We say that P : K —» K
is an R-preserving mapping if
h,k € K : hRk = PhRPK.”
“Definition 1.3. Let X € N. We say that R is R-transitive on K if
ho, hy, ..., hx+1 € K : hiRhiiq, for all i € {0, 1, ..., 8} = hoRhx4+1.”
“Remark 1.4. Let X € N. We have:
(1) If R is transitive, then it is X-transitive, for all X € N.
(i1) If R is X-transitive, then it is eX-transitive, for all e € N.”
“Definition 1.5. Let (K, ) be a metric space and R;, R two binary relations on K. We say
that (K, I) is (Rq, Ry)- regular if for sequence {h;} in K such that h, > h € K as t — oo, and
h:R1h¢41, h:R;h:+1, forallt € N,

there exists a subsequence {hy()} such that

h¢e)R1h, h¢e)Rz2h, foralle € N.”
“Definition 1.6. We say that a subset D of K is (R1, R2) —directed if for all h,k € D, there
exists z € K such that
hRi1z AKkR1z and hR,z AKR,z.”
“Definition 1.7. Let K be asetand , f : K X K — [0, +) are two mappings. Define two
binary relations R1 and R» on K by
h,k € K :hRikiffa(h,k) < 1
and
hk € K :hRkiff B(h,k) = 1.7

Berzig and Karapinar [4] introduced (af, B¢) —contractive mapping as given below:

“Definition 1.8. Let (K, 1) be a metric space, and let P : K — K be a given mapping. We say
that P is (af;, ) —contractive mappings if there exists a pair of generalized distance (f, ¢)

such that
FUPh, PK)) < a(h, K)F(I(h k) — B(h,k)$(I(h K)), for all hk € K,
where @, 8 : K X K — [0, +0).”

2. Main Results

Definition 2.1. Consider the pair of the functions (f5 ¢) and this pair of the functions is said
to be strong generalized altering distance where f, ¢ : [0,00) — [0,00) if the following

conditions hold:
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(C1) 5(0) =0,
(C2) fis continuous,

(C3) f is non-decreasing,

(C4) Lime(x) = 0 = limx; = 0.
t—>oo

t—>co

Popescu in [16] and Moradi and Farajzadeh [15] introduced condition (C4).
Definition 2.2. Let (K, [) be a metric space, and let P : K — K be a given mapping. We say
that P is generalized (af, @) —contractive mappings if there exists a pair of generalized

distance (f, ¢) such that
F(U(Ph, PK)) < a(h, K)F(Z(h k) — B(h,K)¢(Z(h, k), for all hk €K,

@.1)
where Z(h, k) = max {I(h, k), L(h, Ph), [(k, Pk), m}’

and a,f : K X K = [0, ).
Theorem 2.3. Let (K, [) be a complete metric space, No € N U{0}, and let P : K — K be
generalized (af, f¢) —contractive mapping satisfying the following conditions:
(1) R;is N —transitive fori = 1, 2;
(i1) P is R; —transitive fori = 1, 2;
(iii) There exists hy € K such that hoRiPhg fori =1, 2;
(iv) P is continuous.
Then P has a fixed point, that is, there exists h € K such that Ph = h,
Proof Let hy € K such that hoRiPhy for i = 1, 2. Let sequence {h;} be defined by recursive
relation hyt1 = Phy, for all t = 0.
Ifhy = hy4q, for some t = 0, then h = h, is a fixed point of P.
Assume that hy # hgy 1, forall t > 0.
Form (ii) and (iii), we obtain
hoR1Phg = a(hg, Phy) = a(ho, hy) < 1 = a(Phy, Phy) = a(hy, hp) < 1.
Similarly, we have
hoR,Pho = B(ho, Pho) = B(ho, hy) = 1 = B(Phy, Phy) = B(hy, hyp) = 1.
By Principal of Mathematical induction and using condition (ii),we have
a(hy her) < 1, for all t=>0.
(2.2)

and, similarly, we have

3

©Scopus/Elsevier Page No: 23 Journaleit.org



Journal of Electronics and Information Technology(1009-5896) || Volume 25 Issue 10 2025

B(he hesn) = 1, for all t=0.
(2.3)
Substituting h = h; and k = h¢41 in (2.1), we obtain
F((Phe,Pher1)) < alhe, hes1)F(Z(he, her1)) — B(he, her1)@(Z (he, hes1)),
(2.4)
Using (2.2) and (2.3) in inequality (2.4), we obtain
F(U(her1, her2)) < F(Z(he, her1)) — @(Z(he, her1)),
(2.5)
where Z(hg, het1)
=max{l(h ,h )I(h,Ph)I(h Ph l-@@ﬂ;)"'—l(hﬂaﬂﬂl}
t t+1 t ot t+1 t+1) 2

l_(hyht_-li)ﬂ(ht_-d.hu-ll}
2

max {I(he, hes1), LI(he hierr), Ihess, hes2)s

l )+1(h
= Imax {l(ht; ht+1), l(ht+1; ht+2 )» Hhubes +2 uigt_ﬁl}-

Case (i) If Z(hg, hern) = I(he, hera).
From (2.5), we get

FU(he+1, heva)) < FU(he hern)) — @(U(he, hern)),
this implies,

FUhes1, hes2)) < FU(he, hera)).

Since f is non-decreasing function.
Therefore, l(het1, het2) < U(hy het o).
Case (ii) If Z(he, he+1) = [(hett, hes2).
From (2.5), we get

F((hes1,hev2)) < F(Uher1, hes2)) — @(U(herr, hes2)).
Since f is non-decreasing function.
Therefore, above inequality holds only when I(h¢;q, hey2) = 0,
this implies,
h¢4+1 = h¢yp, which is a contradiction.
Hence our supposition was wrong.
Therefore, Z(hy, hey1) # L(hetr, hey2).
From above discussed cases, we get [(h;y1, heyo) < U(hg hetr)-

It shows that sequence {l(hy, h¢+1)} is monotonically decreasing.
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From  above  discussed cases, we also get  Z(hg, hes1) = L(hg hetr).
(2.6)
Using (2.6) in (2.5), we obtain

FU(herr , hes2)) < F(U(he, her1)) — @(Ulhe, hes1),

2.7
Thus, there exists r € Ry such that ll_{’g I(he hev1) = 1
(2.8)
We will prove that r = 0.
Letting t — oo in inequality (2.7), we get
tli_g’lof(l(htﬂ yher2)) < lti_r&f(l(ht, hev1)) — ltiElOQD(l(ht; hes1)),
Using (2.8) in above inequality, we get
Fr) <50 - lijﬂlfa(l(ht' he+1)),
this implies,
tli_)rglo(l’(l(ht; her1)) =0,

By using condition (C3), we get

lim I(hy, hets) = 0.
(2.9
On the other hand, by (2.2) and (i), we obtain
a(hy, husens1) < 1 for all u,e > 0.
(2.10)
and, similarly, we have
B(hy, husen+1) = 1 for all u,e > 0.
(2.11)
Now, substituting h = h,, and k = h,rin (2.1), where ©' = u + eN + 1, for some u,e = 0,
we obtain
F(U(Phu, Phy)) < a(he, hyf) F(Z (ha, hyr)) — B (hu, hyf) @ (Z (ha, b)),
(2.12)

where Z(hy, hyr)

I(hy, Phy) + U(hyr, Phyr
= max { (R ), 1 PR, s, Phye), e ) * X )

2
( ((huhus )+ R 7, )
= max {l hy, hyr), [(hy, hus1), I(hyr, hyfir), 5 3
5
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Using inequalities (2.10), (2.11) in (2.12), we get
F((Phy, Phyr)) < §(Z(hw, b)) — @(Z (ha, b)),
(2.13)

where Z(hy, hyr) =

I(hhu+1)+I(hy A F )
max {{(hu, B ©), L, Ryt ), I, By ) — ey,

Now we have three different subcases.

Subcase (i) If Z(hy, h,r) = I(hy, hyf).
Then inequality (2.13) becomes

F (U (hur1, hyr1)) < F(U (e, hor)) — @ (L(hw, hy)).
Similarly, from case (i), we get l(hu+1, hyri1) < U(hy, hyr).
It shows that sequence {l(hy, h,r)} is monotonically decreasing.

Now repeating the same steps as after equation (2.8), we obtain

lim I(hy, hyr) = O.

Uu—>co

Subcase (i) If Z(hy, hyr) = L(hy By 1).
Then inequality (2.13) becomes

FU(hus1, hyrr1)) < F(U(he, hus1)) — @(U(he, hat1)),

Letting u — oo and using (2.9), we get
L}Lrgof(l(hun,huuﬂ) =0,
this implies,
iijgol(huﬂ’ hyr41) = 0.

Subcase (iii) If Z(hy, hyr) = U(hyr, hyrgq)-
Then inequality (2.13) becomes

f(l(hu+1: huF+1)) < .f(l(huF' huF+1)) - (p(l(hqu huF+1))'

Similarly, from subcase (ii), we get

ii_r}gol(huﬂ» hyi) = 0.
From all above discussed subcases, we conclude that

lim I(hy, hyr) = 0.
(2.14)

Next, we will prove that {h.} is Cauchy sequence. Suppose, to the contrary, that {h} is not a

Cauchy sequence.
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Then there is € > 0 and sequences {u(e)} and {t(e)} such that, for all positive integers e, we
have

t(e) >u(e) >e, [(huce), hee)) = € and I(huce), hee)-1) < €
(2.15)
Then we have

€ < l(hycey hee)) = Ulhucey heey-1) + lhee)-1 hece) < € + Ilhee)-1, hece))
Letting e — oo and using (2.9), we get
lim [(hue), hee) = €. (2.16)

e—00

Furthermore, for each e = 0, there exists pe, 5¢ > 0 such that u'(e) = u(e) + Ne+1 + 1 =

t(e) + 5e.
uf(e)—1 uf(e)—1
€ < l(hue) hufe) < llhue, hee-1) + 25 Uhyhiv) <€+ 33 I(hg hivo)
i=t(e)—1 i=t(e)—1

Again, letting e = oo and using (2.9), we get
ell_glo L(huee), hur(e)) = €.
(2.17)
Again
l(huey hufe) < Ulhucey hue)-1) + Uhue)-1 hufe)-1) + IhwFe)-1 hre))
l(hye)-1 hyfe)-1) = Ilhyge)—1 huee)) + Ulhuey hure)) + Llhuree)y huFey-1)

Letting e — oo in above inequalities, using (2.9), (2.14) and (2.17), we get
Jim I(hye)-1 hfe-1) = €

(2.18)

Substituting h = hye)—1 and k = huF(e)_l in (2.1), we have

F (I(Phy(e)-1, Phyfe)-1)) < a(hyie)-1, hofe)-1)F (Z (hue)-1 hofe)-1)) —

ﬁ(hu(e)—l: huF(e)—l)go (Z(hu(e)—lv huF(e)—l))
Using (2.10) and (2.11) in above inequality, we get
(e hure))) = f (Z(hue)-1, hure)-1)) — @ (Z(hue)-1, hur(e)-1)),
(2.19)

where Z (hu(e)—lv huF(e)—l)

7
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l(hu(e)—l; huF(e)—l); l(hu(e)—l; Phu(e)—l)l l(huF(e)—lv PhuF(e)—l);

= max{ l(hu(e)—l: Phu(e)—l) + l(huF(e)—ll PhuF(e)—l) }
2
lthye)-1 hufe)—1)s Llhye)—1, hue)s LhyFe)—1 hufe)s
= max{ [(huge)—1hu(e) H(hF o)~ 1My (o) 3
2

Subsubcase (i) If Z(huee)-1, hufe)-1) = l(hue)-1, hufe)-1)-
Then inequality (2.19) becomes
F (Uhacey hufe))) < F (Lhuce)-1, hufe)-1)) — @ (U(hue)-1 hufe)—1)),
Letting e — oo in above inequality, using (2.17), (2.18) and the continuity of f and ¢, we
get
J(e < 5(e) - eli_)rréow (I (hucer-1, hufe)-1))-
Using the condition (C3), we conclude that € = 0.
Subsubcase (i1) If (hue)-1, hufe)—1) = I(hue)-1, huce).
Then inequality (2.19) becomes
F ((huce), hufe))) = F (L(huce)-1, hu)) — @ (L(huce)-1, huce))),

Letting e = oo in above inequality, using (2.9) and the continuity of f and ¢, we get

J(€) = 5(0) —9(0) =0,
this implies,

f(e)=0=¢€=0.
Subsubcase (iii) If Z (huge)-1, hufe)-1) = l(huFe)—1 huf(e))-
Then inequality (2.19) becomes
F U(haee), hufe))) < f Uhure)-1 hure)) — @ Uhure)-1, hur(e)))-

Letting e = oo in above inequality, using (2.9) and the continuity of f and ¢, we get

J(€) = 5(0) —¢(0) =0,
this implies,

f(e)=0=€=0.

From all above discussed three subsubcases, we find € = 0, which is a contraction with € >

0.

Hence our supposition was wrong. Hence, therefore {h,} is a Cauchy sequence.

Since (K, 1) is a complete metric space, then there is h € K such that lim h; = h.
t—oo
Since P is continuous, then we have
8
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h = lim ht+1 = lim Pht =Ph

t—oo t—oo

Due to uniqueness of the limit, we derive that Ph, = h, that is, h is a fixed point P.

Theorem 2.4 In Theorem 2.3, if we replace the continuity of P by the (Ri, Rz) —regularity
of (K, I), then the conclusion of Theorem 2.3 holds.

Proof Following the proof of Theorem 2.3, we know that the sequence {h:} defined by
he+1 = Ph, for all t > 0, converges to some h € K. Since (K, l) is a complete metric space,
then there exists h € K such that hy > h ast — oo,

Furthermore, the sequence {h,} satisfies (2.2) and (2.3), that is,

h:R1h¢t1, h:Rzh:+1, forallt € N.

Now, since is (R1, Rz) —regular, then there exists a subsequence {hye)} of {h¢} such that
heeR1ih, that is, a(hee), h) < 1and heeRzh, that is, B(hee, h) =1, for all e.
(2.20)

Substituting h, = h() and Kk = h, in (2.1), we obtain

F ((Pheey, Ph)) < a(hee), h)F (Z(heee), h)) — B(heer, W)@ (Z(heee, h)), for all e.
Using (2.20) in above inequality, we obtain

f(L(Pheee), Ph)) < f (Z(hee, b)) — @ (Z(heey, D)), for all e,
2.21)

L(he(e).Phy(e)) +1(h,Ph) }
2

where Z(hy(ey, h) = max {I(Recey, h), Ihce), hegey 1), L, Ph),
Case (i) If Z(he, h) = L(hece, h).

Then inequality (2.21) becomes
f U(heey+1, Ph)) < £ (U(hee, h)) — @ (I(hee, h)), for all e.
this implies,

f (L(heey+1, Ph)) < f(L(hecey, h)), for all e,

Since f is non-decreasing function. Therefore,

[(hee)+1, Ph) < [(hee), h), for all e.
Letting e — oo in above inequality, we obtain
I(h,Ph) = 0 = h = Ph.
Case (ii) If Z(hee), h) = L(hece), heer+1)-
Then inequality (2.21) becomes

f (L(heer+1, Ph)) < f (L(heey heer+1)) — @ (L(hecey, heer+1)), for all e.

9
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Letting e — oo in above inequality, we obtain

[(h,Ph) = 0 = h = Ph.
Case (iii) If Z(hee), h) = I(h, Ph).
Then inequality (2.21) becomes

J (U(heer+1, Ph)) < F(U(h, Ph)) — @(I(h, Ph)), for all e.
Letting e — oo in above inequality, and the continuity of f and ¢, we get
F (U, Ph)) < F(I(h, Ph)) — @(I(h, Ph)), for all e.
lim ¢(i(h, Ph)) = 0.

By using condition (C3), we get

[(h,Ph) = 0 = h = Ph.
From all above discussed three cases, we get Ph = h,
Theorem 2.5. Adding to the hypotheses of Theorem 2.3 (respectively, Theorem 2.4) that K is
(R1, Rz) —directed, we obtain uniqueness of the fixed point of P.
Proof Suppose that h and k are two fixed points of P. Since K is (R1, Rz) —directed, there
exists z € K such that
ath,z) <1,akz) < 1.
(2.22)
and
Bhz) =2 1,B(kz) = 1.
(2.23)
Since P is R; —preserving for i = 1, 2, from (2.22) and (2.23), we get
a(h,Pt z) < 1,a(k, Ptz) < 1, for all t=0.
(2.24)
and
B(h, Ptz) 2 1,6k, Pt z) = 1, for all t=0.
(2.25)
Substituting h = h, k = Ptz in (2.1), we have

FUPhP(P2))) < alh, Pez)§(Z(h, Ptz)) — B(h, Ptz)p(Z(h, Pt2)).

(2.26)
Using (2.24), (2.25) and (2.1), we obtain

FU(h, Pt+1z2)) < £(Z(h, Ptz)) — @ (Z(h, Ptz)),
(2.27)
10
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t t+1
where Z(h, Ptz) = max {l(h, Ptz), l(h, Ph), [(Ptz, Pt+1z), {PRHIPZP™E)
2
t t+1
= max {l(h, Ptz), [(Ptz, Pt+1z), m.
2
Case (i) If Z(h, Ptz) = l(h, Ptz).
Then inequality (2.27) becomes
F(l(h, Pt+1z)) < F(I(h,Ptz)) — @(l(h, Ptz)), for all t=>0.

(2.28)

Since f is non-decreasing function.

I(h, Pt+1z) < I(h, Ptz), for all t > 0.

It follows that the sequence {l(h, Pt+1z)} is decreasing. Thus there exists r = 0 such that
lim I(h, Pt+1z) = r.

t—oo

We claim that r = 0.
Letting t — oo in (2.28), we get
Jr) <5 - tlirglo¢(l(h.PfZ)),
this implies,
ggﬂKhW@)=&

(2.29)
By condition (C3), we obtain
liml(h, Ptz) = 0.

t—oo

(2.30)
Similarly, we get

limi(k, Ptz) = 0.

t—oo

Using (2.29) and (2.30), the uniqueness of the limit gives us h = k.
Case (ii) If Z(h, Ptz) = l(Ptz, Pt*1z)
Then inequality (2.27) becomes
F(U(h, Pt+1z)) < F(I(Ptz,Pt+1z)) — @(l(Ptz, Pt+1z)), for all t=>0
231
Letting t = o0 in (2.31), we get
lim £ (U(h, Ptz)) =0,

this implies,

11
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liml(h, Ptz) = 0.

t—>oo
(2.32)
Similarly, we get
limI(k, Ptz) = 0.

t—>oo

(2.33)
Using (2.32) and (2.33), the uniqueness of the limit gives us h = k.
Corollary 2.6. Let (K, ) be a complete metric space, and let P : K — K be a given mapping

such that if there exists a pair of generalized distance (f ¢) such that

FUPh PK)) < a(h, K)FU(hK) = B(h K@M k), forallh k €K,
And a,f : K X K - [0, ).
Suppose

(i) Riis N —transitive fori = 1, 2;

(i1) P is R; —transitive fori = 1, 2;

(iii) There exists hy € K such that hoRiPhg fori = 1, 2;

(iv) P is continuous.
Then P has a fixed point, that is, there exists h € K such that Ph = h,
Proof Taking Z(h,k) = I(h, k) in Theorem 2.3 to get the proof.
Corollary 2.5. In Corollary 2.6, if we replace the continuity of P by the (R1, Rz) —regularity
of (K, 1), then the conclusion of Corollary 2.6 holds.
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