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1. Introduction and Preliminaries 

Fixed point theory is a branch of mathematics that deals with the study of mappings that have 

points that remain unchanged under the mapping process. It provides powerful tools and 

techniques for analyzing the existence, uniqueness, and stability of fixed points in different 

settings. Fixed point theory has found applications in diverse fields. 

One of the most fundamental theorems in fixed point theory is the Banach fixed point 

theorem [3], also known as the contraction mapping principle. This theorem has numerous 

applications in areas such as functional analysis, numerical analysis, differential equations,  

game theory etc. Stefan Banach valuable work has been built by generalizing the metric 

conditions or by imposing conditions on the metric spaces (see [1-18]). 

In this manuscript, we expand the concept of generalized altering distance function and 

introduced  a  generalized  (𝛼ƒ − 𝛽𝜑) −contractive  mappings  and  give  fixed  point  theorems 

for such contractions in metric spaces. 

Khan et al. [11] use a control function (altering distance function) they referred to as a 

changing distance function allowed them to tackle new fixed point problems. 

“Definition 1.1. [11] A function ƒ ∶ [0, ∞) →   [0, ∞) is called an altering distance function if 

the following properties are satisfied 

(i) ƒ(0) = 0 if and only if 𝑡 = 0, 

(ii) ƒ is continuous and monotonically non-decreasing.” 
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We first recall the auxiliary functions that we shall use effectively. 

“Definition 1.2. Let 𝐾 be a set, and let 𝑅 be a binary relation on 𝐾. We say that 𝑃 ∶ 𝐾 → 𝐾 

is an 𝑅-preserving mapping if 

ⱨ, ⱪ ∈ 𝐾 ∶ ⱨ𝑅ⱪ ⟹ 𝑃ⱨ𝑅𝑃ⱪ.” 

“Definition 1.3. Let ℵ ∈ ℕ. We say that 𝑅 is ℵ-transitive on 𝐾 if 

ⱨ0, ⱨ1, … , ⱨℵ+1 ∈ 𝐾 ∶ ⱨi𝑅ⱨi+1, for all i ∈ {0, 1, … , ℵ} ⟹ ⱨ0𝑅ⱨℵ+1.” 

“Remark 1.4. Let ℵ ∈ ℕ. We have: 

(i) If 𝑅 is transitive, then it is ℵ-transitive, for all ℵ ∈ ℕ. 

(ii) If 𝑅 is ℵ-transitive, then it is eℵ-transitive, for all e ∈ ℕ.” 

“Definition 1.5. Let (𝐾, 𝑙) be a metric space and 𝑅1, 𝑅2 two binary relations on 𝐾. We say 

that (𝐾, 𝑙) is (𝑅1, 𝑅2)- regular if for sequence {ⱨ𝑡} in 𝐾 such that ⱨ𝑡 → ⱨ ∈ 𝐾 as 𝑡 → ∞, and 

ⱨ𝑡𝑅1ⱨ𝑡+1, ⱨ𝑡𝑅2ⱨ𝑡+1, for all 𝑡 ∈ ℕ, 

there exists a subsequence {ⱨ𝑡(e)} such that 

ⱨ𝑡(e)𝑅1ⱨ, ⱨ𝑡(e)𝑅2ⱨ, for all e ∈ ℕ.” 

“Definition 1.6. We say that a subset 𝐷 of 𝐾 is (𝑅1, 𝑅2) −directed if for all ⱨ, ⱪ ∈ 𝐷, there 

exists 𝑧 ∈ 𝐾 such that 

ⱨ𝑅1𝑧 𝖠 ⱪ𝑅1𝑧 and ⱨ𝑅2𝑧 𝖠 ⱪ𝑅2𝑧.” 

“Definition 1.7. Let 𝐾 be a set and 𝛼, 𝛽 ∶ 𝐾 × 𝐾 → [0, +∞) are two mappings. Define two 

binary relations 𝑅1 and 𝑅2 on 𝐾 by 

ⱨ, ⱪ ∈ 𝐾 : ⱨ𝑅1ⱪ iff 𝛼(ⱨ, ⱪ) ≤ 1 

and 

ⱨ, ⱪ ∈ 𝐾 ∶ ⱨ𝑅2ⱪ iff 𝛽(ⱨ, ⱪ) ≥ 1.” 

Berzig and Karapinar [4] introduced (𝛼ƒ, 𝛽𝜑) −contractive mapping as given below: 

 
“Definition 1.8. Let (𝐾, 𝑙) be a metric space, and let 𝑃 ∶ 𝐾 → 𝐾 be a given mapping. We say 

that 𝑃 is (𝛼ƒ, 𝛽ɸ) −contractive mappings if there exists a pair of generalized distance (ƒ, ɸ) 

such that 

ƒ(𝑙(𝑃ⱨ, 𝑃ⱪ)) ≤ 𝛼(ⱨ, ⱪ)ƒ(𝑙(ⱨ, ⱪ)) − 𝛽(ⱨ, ⱪ)ɸ(𝑙(ⱨ, ⱪ)), for all ⱨ, ⱪ ∈ 𝐾, 

where 𝛼, 𝛽 ∶ 𝐾 × 𝐾 → [0, +∞).” 

2. Main Results 

Definition 2.1. Consider the pair of the functions (ƒ, 𝜑)   and this pair of the functions is said 

to  be  strong  generalized  altering  distance  where  ƒ, 𝜑 ∶ [0, ∞) → [0, ∞)  if  the  following 

conditions hold: 
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(𝐶1) ƒ(0) = 0, 

(𝐶2) ƒ is continuous, 

(𝐶3) ƒ is non-decreasing, 

(𝐶4) Lim 𝜑(𝑥𝑡) = 0 ⟹ lim𝑥𝑡 = 0. 
𝑡→∞ 𝑡→∞ 

Popescu in [16] and Moradi and Farajzadeh [15] introduced condition (C4). 

Definition 2.2. Let (𝐾, 𝑙) be a metric space, and let 𝑃 ∶   𝐾 → 𝐾 be a given mapping. We say 

that  𝑃  is  generalized  (𝛼ƒ, 𝛽𝜑) −contractive  mappings  if  there  exists  a  pair  of  generalized 

distance (ƒ, 𝜑) such that 

ƒ(𝑙(𝑃ⱨ, 𝑃ⱪ)) ≤ 𝛼(ⱨ, ⱪ)ƒ(𝑍(ⱨ, ⱪ)) − 𝛽(ⱨ, ⱪ)𝜑(𝑍(ⱨ, ⱪ)), for all ⱨ, ⱪ ∈ 𝐾, 

(2.1) 

where 𝑍(ⱨ, ⱪ) = max {𝑙(ⱨ, ⱪ), 𝑙(ⱨ, 𝑃ⱨ), 𝑙(ⱪ, 𝑃ⱪ), 
𝑙(ⱨ,𝑃ⱨ)+𝑙(ⱪ,𝑃ⱪ)

}, 
2 

and 𝛼, 𝛽 ∶ 𝐾 × 𝐾 → [0, ∞). 

Theorem 2.3. Let (𝐾, 𝑙) be a complete metric space, ℕ0 ∈ ℕ ⋃{0}, and let 𝑃 ∶ 𝐾 → 𝐾 be 

generalized (𝛼ƒ, 𝛽𝜑) −contractive mapping satisfying the following conditions: 

(i) 𝑅i is 𝑁 −transitive for i = 1, 2; 

(ii) 𝑃 is 𝑅i −transitive for i = 1, 2; 

(iii) There exists ⱨ0 ∈ 𝐾 such that ⱨ0𝑅i𝑃ⱨ0 for i = 1, 2; 

(iv) 𝑃 is continuous. 

Then 𝑃 has a fixed point, that is, there exists ⱨ ∈ 𝐾 such that 𝑃ⱨ = ⱨ. 

Proof Let ⱨ0 ∈ 𝐾 such that ⱨ0𝑅i𝑃ⱨ0 for i = 1, 2. Let sequence {ⱨ𝑡} be defined by recursive 

relation ⱨ𝑡+1 = 𝑃ⱨ𝑡, for all 𝑡 ≥ 0. 

If ⱨ𝑡 = ⱨ𝑡+1, for some 𝑡 ≥ 0, then ⱨ = ⱨ𝑡 is a fixed point of 𝑃. 

Assume that ⱨ𝑡 ≠ ⱨ𝑡+1, for all 𝑡 ≥ 0. 

Form (ii) and (iii), we obtain 

ⱨ0𝑅1𝑃ⱨ0 ⇒ 𝛼(ⱨ0, 𝑃ⱨ0) = 𝛼(ⱨ0, ⱨ1) ≤ 1 ⟹ 𝛼(𝑃ⱨ0, 𝑃ⱨ1) = 𝛼(ⱨ1, ⱨ2) ≤ 1. 

Similarly, we have 

ⱨ0𝑅2𝑃ⱨ0 ⇒ 𝛽(ⱨ0, 𝑃ⱨ0) = 𝛽(ⱨ0, ⱨ1) ≥ 1 ⟹ 𝛽(𝑃ⱨ0, 𝑃ⱨ1) = 𝛽(ⱨ1, ⱨ2) ≥ 1. 

By Principal of Mathematical induction and using condition (ii),we have 

𝛼(ⱨ𝑡, ⱨ𝑡+1) ≤ 1, for all 𝑡 ≥ 0. 

(2.2) 

and, similarly, we have 
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𝛽(ⱨ𝑡, ⱨ𝑡+1) ≥ 1, for all 𝑡 ≥ 0. 

(2.3) 

Substituting ⱨ = ⱨ𝑡 and ⱪ = ⱨ𝑡+1 in (2.1), we obtain 

ƒ(𝑙(𝑃ⱨ𝑡 , 𝑃ⱨ𝑡+1)) ≤  𝛼(ⱨ𝑡, ⱨ𝑡+1)ƒ(𝑍(ⱨ𝑡, ⱨ𝑡+1)) − 𝛽(ⱨ𝑡, ⱨ𝑡+1)𝜑(𝑍(ⱨ𝑡, ⱨ𝑡+1)), 

(2.4) 

Using (2.2) and (2.3) in inequality (2.4), we obtain 

ƒ(𝑙(ⱨ𝑡+1 , ⱨ𝑡+2)) ≤ ƒ(𝑍(ⱨ𝑡, ⱨ𝑡+1)) − 𝜑(𝑍(ⱨ𝑡, ⱨ𝑡+1)), 

(2.5) 

where 𝑍(ⱨ𝑡, ⱨ𝑡+1) 

 
= max {𝑙(ⱨ , ⱨ 

 
), 𝑙(ⱨ , 𝑃ⱨ  ), 𝑙(ⱨ 

 
, 𝑃ⱨ ), 

𝑙(ⱨ𝑡, 𝑃ⱨ𝑡) + 𝑙(ⱨ𝑡+1, 𝑃ⱨ𝑡+1)
}
 

𝑡 𝑡+1 𝑡 𝑡 𝑡+1 𝑡+1 2 
 

= max {𝑙(ⱨ𝑡, ⱨ 
 

𝑡+1 ), 𝑙(ⱨ𝑡, ⱨ 
 

𝑡+1 ), 𝑙(ⱨ 
 

𝑡+1 , ⱨ𝑡+2 ), 
𝑙(ⱨt,ⱨt+1)+𝑙(ⱨt+1,ⱨt+2)

} 
2 

= max {𝑙(ⱨ𝑡, ⱨ 
 

𝑡+1 ), 𝑙(ⱨ𝑡+1 , ⱨ𝑡+2 ), 
𝑙(ⱨt,ⱨt+1)+𝑙(ⱨt+1,ⱨt+2)

}.
 

2 

Case (i) If 𝑍(ⱨ𝑡, ⱨ𝑡+1) = 𝑙(ⱨ𝑡, ⱨ𝑡+1). 

From (2.5), we get 

 

this implies, 

ƒ(𝑙(ⱨ𝑡+1 , ⱨ𝑡+2)) ≤ ƒ(𝑙(ⱨ𝑡, ⱨ𝑡+1)) − 𝜑(𝑙(ⱨ𝑡, ⱨ𝑡+1)), 

 
 

ƒ(𝑙(ⱨ𝑡+1 , ⱨ𝑡+2)) ≤ ƒ(𝑙(ⱨ𝑡, ⱨ𝑡+1)). 

Since ƒ is non-decreasing function. 

Therefore, 𝑙(ⱨ𝑡+1 , ⱨ𝑡+2) ≤ 𝑙(ⱨ𝑡, ⱨ𝑡+1). 

Case (ii) If 𝑍(ⱨ𝑡, ⱨ𝑡+1) = 𝑙(ⱨ𝑡+1, ⱨ𝑡+2). 

From (2.5), we get 

ƒ(𝑙(ⱨ𝑡+1 , ⱨ𝑡+2)) ≤ ƒ(𝑙(ⱨ𝑡+1, ⱨ𝑡+2)) − 𝜑(𝑙(ⱨ𝑡+1, ⱨ𝑡+2)). 

Since ƒ is non-decreasing function. 

Therefore, above inequality holds only when 𝑙(ⱨ𝑡+1, ⱨ𝑡+2) = 0, 

this implies, 

ⱨ𝑡+1 = ⱨ𝑡+2, which is a contradiction. 

Hence our supposition was wrong. 

Therefore, 𝑍(ⱨ𝑡, ⱨ𝑡+1) ≠ 𝑙(ⱨ𝑡+1, ⱨ𝑡+2). 

From above discussed cases, we get 𝑙(ⱨ𝑡+1, ⱨ𝑡+2) ≤ 𝑙(ⱨ𝑡, ⱨ𝑡+1). 

It shows that sequence {𝑙(ⱨ𝑡, ⱨ𝑡+1)} is monotonically decreasing. 
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From above discussed cases, we also get 𝑍(ⱨ𝑡, ⱨ𝑡+1) = 𝑙(ⱨ𝑡, ⱨ𝑡+1). 

(2.6) 

Using (2.6) in (2.5), we obtain 

ƒ(𝑙(ⱨ𝑡+1 , ⱨ𝑡+2)) ≤ ƒ(𝑙(ⱨ𝑡, ⱨ𝑡+1)) − 𝜑(𝑙(ⱨ𝑡, ⱨ𝑡+1)), 

(2.7) 

Thus, there exists 𝑟 ∈ ℝ+ such that lim 𝑙(ⱨ𝑡, ⱨ𝑡+1) = 𝑟. 
𝑡→∞ 

(2.8) 

We will prove that 𝑟 = 0. 

Letting 𝑡 → ∞ in inequality (2.7), we get 

lim ƒ(𝑙(ⱨ𝑡+1 , ⱨ𝑡+2)) ≤  lim ƒ(𝑙(ⱨ𝑡, ⱨ𝑡+1)) −  lim𝜑(𝑙(ⱨ𝑡, ⱨ𝑡+1)), 
𝑡→∞ 𝑡→∞ 𝑡→∞ 

Using (2.8) in above inequality, we get 

ƒ(𝑟) ≤ ƒ(𝑟) −  lim𝜑(𝑙(ⱨ𝑡, ⱨ𝑡+1)), 
𝑡→∞ 

this implies, 

 

 
By using condition (C3), we get 

 

 
(2.9) 

 

lim 𝜑(𝑙(ⱨ𝑡, ⱨ𝑡+1)) = 0, 
𝑡→∞ 

 
 

lim 𝑙(ⱨ𝑡, ⱨ𝑡+1) = 0. 
𝑡→∞ 

On the other hand, by (2.2) and (i), we obtain 
 

𝛼(ⱨ𝑢, ⱨ𝑢+e𝑁+1) ≤ 1 

(2.10) 

for all 𝑢, e ≥ 0. 

and, similarly, we have    

𝛽(ⱨ𝑢, ⱨ𝑢+e𝑁+1) ≥ 1 

(2.11) 

for all 𝑢, e ≥ 0. 

Now, substituting ⱨ = ⱨ𝑢 and ⱪ = ⱨ𝑢𝘍 in (2.1), where 𝑢′ = 𝑢 + e𝑁 + 1, for some 𝑢, e ≥ 0, 

we obtain 

ƒ(𝑙(𝑃ⱨ𝑢, 𝑃ⱨ𝑢𝘍 )) ≤  𝛼(ⱨ𝑢, ⱨ𝑢𝘍 )ƒ(𝑍(ⱨ𝑢, ⱨ𝑢𝘍 )) − 𝛽(ⱨ𝑢, ⱨ𝑢𝘍 )𝜑(𝑍(ⱨ𝑢, ⱨ𝑢𝘍 )), 

(2.12) 

where 𝑍(ⱨ𝑢, ⱨ𝑢𝘍 ) 

 
=  max {𝑙 

 
(ⱨ𝑢, ⱨ𝑢𝘍 ), 𝑙(ⱨ𝑢, 𝑃ⱨ𝑢), 𝑙(ⱨ𝑢𝘍 , 𝑃ⱨ𝑢𝘍 ), 

 ( 

𝑙(ⱨ𝑢, 𝑃ⱨ𝑢) + 𝑙(ⱨ𝑢𝘍 , 𝑃ⱨ𝑢𝘍 ) 

2 
} 

𝑙(ⱨu,ⱨu+1)+𝑙(ⱨu𝘍,ⱨ    𝘍      ) 
 

= max {𝑙 ⱨ𝑢, ⱨ𝑢𝘍 ), 𝑙(ⱨ𝑢, ⱨ𝑢+1), 𝑙(ⱨ𝑢𝘍 , ⱨ𝑢𝘍+1), 
2 

}. 
 
 

5 

u +1 

Journal of Electronics and Information Technology(1009-5896) || Volume 25 Issue 10 2025

©Scopus/Elsevier Page No: 25 Journaleit.org



 

 

} 

Using inequalities (2.10), (2.11) in (2.12), we get 

ƒ(𝑙(𝑃ⱨ𝑢, 𝑃ⱨ𝑢𝘍 )) ≤ ƒ(𝑍(ⱨ𝑢, ⱨ𝑢𝘍 )) − 𝜑(𝑍(ⱨ𝑢, ⱨ𝑢𝘍 )), 

(2.13) 

where 𝑍(ⱨ𝑢, ⱨ𝑢𝘍 ) = 

max {𝑙(ⱨ𝑢 , ⱨ𝑢 𝘍 ), 𝑙(ⱨ𝑢 , ⱨ𝑢+1 

 

), 𝑙(ⱨ 𝑢𝘍 , ⱨ 
 

𝑢𝘍+1 ), 
𝑙(ⱨu,ⱨu+1)+𝑙(ⱨu𝘍,ⱨu𝘍+1)   

.
 

2 

Now we have three different subcases. 

Subcase (i) If 𝑍(ⱨ𝑢, ⱨ𝑢𝘍 ) = 𝑙(ⱨ𝑢, ⱨ𝑢𝘍 ). 

Then inequality (2.13) becomes 

ƒ(𝑙(ⱨ𝑢+1, ⱨ𝑢𝘍+1)) ≤ ƒ(𝑙(ⱨ𝑢, ⱨ𝑢𝘍 )) − 𝜑(𝑙(ⱨ𝑢, ⱨ𝑢𝘍 )). 

Similarly, from case (i), we get 𝑙(ⱨ𝑢+1, ⱨ𝑢𝘍+1) ≤ 𝑙(ⱨ𝑢, ⱨ𝑢𝘍 ). 

It shows that sequence {𝑙(ⱨ𝑢, ⱨ𝑢𝘍 )} is monotonically decreasing. 

Now repeating the same steps as after equation (2.8), we obtain 

lim 𝑙(ⱨ𝑢, ⱨ𝑢𝘍 ) = 0. 
𝑢→∞ 

Subcase (ii) If 𝑍(ⱨ𝑢, ⱨ𝑢𝘍 ) = 𝑙(ⱨ𝑢, ⱨ𝑢+1). 

Then inequality (2.13) becomes 

ƒ(𝑙(ⱨ𝑢+1, ⱨ𝑢𝘍+1)) ≤ ƒ(𝑙(ⱨ𝑢, ⱨ𝑢+1)) − 𝜑(𝑙(ⱨ𝑢, ⱨ𝑢+1)), 

Letting 𝑢 → ∞ and using (2.9), we get 

lim ƒ(𝑙(ⱨ𝑢+1, ⱨ𝑢𝘍+1)) = 0, 
𝑢→∞ 

this implies,  

lim 𝑙(ⱨ𝑢+1, ⱨ𝑢𝘍+1) = 0. 
𝑢→∞ 

Subcase (iii) If 𝑍(ⱨ𝑢, ⱨ𝑢𝘍 ) = 𝑙(ⱨ𝑢𝘍 , ⱨ𝑢𝘍+1). 

Then inequality (2.13) becomes 

ƒ(𝑙(ⱨ𝑢+1, ⱨ𝑢𝘍+1)) ≤ ƒ(𝑙(ⱨ𝑢𝘍 , ⱨ𝑢𝘍+1)) − 𝜑(𝑙(ⱨ𝑢𝘍 , ⱨ𝑢𝘍+1)). 

Similarly, from subcase (ii), we get 

lim 𝑙(ⱨ𝑢+1, ⱨ𝑢𝘍+1) = 0. 
𝑢→∞ 

From all above discussed subcases, we conclude that 

lim 𝑙(ⱨ𝑢, ⱨ𝑢𝘍 ) = 0. 
𝑢→∞ 

(2.14) 

Next, we will prove that {ⱨ𝑡} is Cauchy sequence. Suppose, to the contrary, that {ⱨ𝑡} is not a 

Cauchy sequence. 
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Then there is ∈ > 0 and sequences {𝑢(e)} and {𝑡(e)} such that, for all positive integers e, we 

have 

 

(2.15) 

𝑡(e) > 𝑢(e) > e, 𝑙(ⱨ𝑢(e), ⱨ𝑡(e)) ≥ ∈ and 𝑙(ⱨ𝑢(e), ⱨ𝑡(e)−1) < ∈ 

Then we have 

∈ ≤ 𝑙(ⱨ𝑢(e), ⱨ𝑡(e)) ≤  𝑙(ⱨ𝑢(e), ⱨ𝑡(e)−1) + 𝑙(ⱨ𝑡(e)−1, ⱨ𝑡(e)) < ∈ + 𝑙(ⱨ𝑡(e)−1, ⱨ𝑡(e)) 

Letting e → ∞ and using (2.9), we get 

lim  𝑙(ⱨ𝑢(e), ⱨ𝑡(e)) = ∈. (2.16) 
e→∞ 

Furthermore, for each e ≥ 0, there exists 𝜇e, 5e > 0 such that 𝑢′(e) = 𝑢(e) + 𝑁𝜇e+1 + 1 = 

𝑡(e) + 5e. 

𝑢𝘍(e)−1 

∈ ≤  𝑙(ⱨ𝑢(e), ⱨ𝑢𝘍(e)) ≤  𝑙(ⱨ𝑢(e), ⱨ𝑡(e)−1) + ∑ 𝑙(ⱨi, ⱨi+1)  < ∈ + 
i=𝑡(e)−1 

𝑢𝘍(e)−1 

∑ 𝑙(ⱨi, ⱨi+1) 

i=𝑡(e)−1 

Again, letting e → ∞ and using (2.9), we get 

lim 𝑙(ⱨ𝑢(e), ⱨ𝑢𝘍(e)) = ∈. 
e→∞ 

(2.17) 

Again 

𝑙(ⱨ𝑢(e), ⱨ𝑢𝘍(e)) ≤ 𝑙(ⱨ𝑢(e), ⱨ𝑢(e)−1) + 𝑙(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1) + 𝑙(ⱨ𝑢𝘍(e)−1, ⱨ𝑢𝘍(e)), 

𝑙(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1) ≤ 𝑙(ⱨ𝑢(e)−1, ⱨ𝑢(e)) + 𝑙(ⱨ𝑢(e), ⱨ𝑢𝘍(e)) + 𝑙(ⱨ𝑢𝘍(e), ⱨ𝑢𝘍(e)−1) 

Letting e → ∞ in above inequalities, using (2.9), (2.14) and (2.17), we get 

lim 
e → ∞ 

𝑙(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1) = ∈. 

(2.18) 

Substituting ⱨ = ⱨ𝑢(e)−1 and ⱪ = ⱨ𝑢𝘍(e)−1 in (2.1), we have 

ƒ (𝑙(𝑃ⱨ𝑢(e)−1, 𝑃ⱨ𝑢𝘍(e)−1)) ≤  𝛼(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1)ƒ (𝑍(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1)) − 
 

𝛽(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1)𝜑 (𝑍(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1)) 

Using (2.10) and (2.11) in above inequality, we get 

ƒ (𝑙(ⱨ𝑢(e), ⱨ𝑢𝘍(e))) ≤   ƒ (𝑍(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1)) − 𝜑 (𝑍(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1)), 

(2.19) 

where 𝑍(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1) 
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𝑙(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1), 𝑙(ⱨ𝑢(e)−1, 𝑃ⱨ𝑢(e)−1), 𝑙(ⱨ𝑢𝘍(e)−1, 𝑃ⱨ𝑢𝘍(e)−1), 
= max { 𝑙(ⱨ𝑢(e)−1, 𝑃ⱨ𝑢(e)−1) + 𝑙(ⱨ𝑢𝘍(e)−1, 𝑃ⱨ𝑢𝘍(e)−1) } 

 

2 

𝑙(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1), 𝑙(ⱨ𝑢(e)−1, ⱨ𝑢(e)), 𝑙(ⱨ𝑢𝘍(e)−1, ⱨ𝑢𝘍(e)), 
= max { 𝑙(ⱨu(e)−1,ⱨu(e))+𝑙(ⱨu𝘍(e)−1,ⱨu𝘍(e)) } . 

 

2 

Subsubcase (i) If 𝑍(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1) = 𝑙(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1). 

Then inequality (2.19) becomes 

ƒ (𝑙(ⱨ𝑢(e), ⱨ𝑢𝘍(e))) ≤   ƒ (𝑙(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1)) − 𝜑 (𝑙(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1)), 

Letting e → ∞ in above inequality, using (2.17), (2.18) and the continuity of ƒ and 𝜑, we 

get 

ƒ(∈) ≤  ƒ(∈) −  lim 𝜑 (𝑙(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1)). 
e → ∞ 

Using the condition (C3), we conclude that ∈ = 0. 

Subsubcase (ii) If (ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1) = 𝑙(ⱨ𝑢(e)−1, ⱨ𝑢(e)). 

Then inequality (2.19) becomes 

ƒ (𝑙(ⱨ𝑢(e), ⱨ𝑢𝘍(e))) ≤ ƒ (𝑙(ⱨ𝑢(e)−1, ⱨ𝑢(e))) − 𝜑 (𝑙(ⱨ𝑢(e)−1, ⱨ𝑢(e))), 

Letting e →  ∞ in above inequality, using (2.9) and the continuity of ƒ and 𝜑, we get 

ƒ(∈) ≤ ƒ(0) − 𝜑(0) = 0, 

this implies, 

ƒ(∈) = 0 ⟹ ∈= 0. 

Subsubcase (iii) If 𝑍(ⱨ𝑢(e)−1, ⱨ𝑢𝘍(e)−1) = 𝑙(ⱨ𝑢𝘍(e)−1, ⱨ𝑢𝘍(e)). 

Then inequality (2.19) becomes 

ƒ (𝑙(ⱨ𝑢(e), ⱨ𝑢𝘍(e))) ≤  ƒ (𝑙(ⱨ𝑢𝘍(e)−1, ⱨ𝑢𝘍(e))) − 𝜑 (𝑙(ⱨ𝑢𝘍(e)−1, ⱨ𝑢𝘍(e))). 

Letting e → ∞ in above inequality, using (2.9) and the continuity of ƒ and 𝜑, we get 

ƒ(∈) ≤ ƒ(0) − 𝜑(0) = 0, 

this implies, 

ƒ(∈) = 0 ⟹ ∈= 0. 

From all above discussed three subsubcases, we find ∈ = 0, which is a contraction with ∈ > 

0. 

Hence our supposition was wrong. Hence, therefore {ⱨ𝑡} is a Cauchy sequence. 

Since (𝐾, 𝑙) is a complete metric space, then there is ⱨ ∈ 𝐾 such that lim ⱨ𝑡 = ⱨ. 
𝑡→∞ 

Since 𝑃 is continuous, then we have 
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) } 

ⱨ = lim ⱨ𝑡+1 = lim 𝑃ⱨ𝑡 = 𝑃ⱨ. 
𝑡→∞ 𝑡→∞ 

Due to uniqueness of the limit, we derive that 𝑃ⱨ = ⱨ, that is, ⱨ is a fixed point 𝑃. 

Theorem 2.4 In Theorem 2.3, if we replace the continuity of 𝑃 by the (𝑅1, 𝑅2) −regularity 

of (𝐾, 𝑙), then the conclusion of Theorem 2.3 holds. 

Proof Following the proof of Theorem 2.3, we know that  the sequence  {ⱨ𝑡}  defined by 

ⱨ𝑡+1 = 𝑃ⱨ𝑡 for all 𝑡 ≥ 0, converges to some ⱨ ∈ 𝐾. Since (𝐾, 𝑙) is a complete metric space, 

then there exists ⱨ ∈ 𝐾 such that ⱨ𝑡 → ⱨ as 𝑡 → ∞. 

Furthermore, the sequence {ⱨ𝑡} satisfies (2.2) and (2.3), that is, 

ⱨ𝑡𝑅1ⱨ𝑡+1, ⱨ𝑡𝑅2ⱨ𝑡+1, for all 𝑡 ∈ ℕ. 

Now, since is (𝑅1, 𝑅2) −regular, then there exists a subsequence {ⱨ𝑡(e)} of {ⱨ𝑡} such that 

ⱨ𝑡(e)𝑅1ⱨ,  that  is,  𝛼(ⱨ𝑡(e), ⱨ) ≤ 1 and   ⱨ𝑡(e)𝑅2ⱨ,   that   is,   𝛽(ⱨ𝑡(e), ⱨ) ≥ 1,   for   all   e. 

(2.20) 

Substituting ⱨ = ⱨ𝑡(e) and ⱪ = ⱨ, in (2.1), we obtain 

ƒ (𝑙(𝑃ⱨ𝑡(e),  𝑃ⱨ)) ≤  𝛼(ⱨ𝑡(e),  ⱨ)ƒ (𝑍(ⱨ𝑡(e), ⱨ)) − 𝛽(ⱨ𝑡(e), ⱨ)𝜑 (𝑍(ⱨ𝑡(e), ⱨ)), for all e. 

Using (2.20) in above inequality, we obtain 

ƒ (𝑙(𝑃ⱨ𝑡(e), 𝑃ⱨ)) ≤ ƒ (𝑍(ⱨ𝑡(e), ⱨ)) − 𝜑 (𝑍(ⱨ𝑡(e), ⱨ)), for all e, 

(2.21) 

 

where 𝑍(ⱨ 

 
 

𝑡(e) 

 
, ⱨ) = max {𝑙(ⱨ 

 
 

𝑡(e) 

 
, ⱨ), 𝑙(ⱨ 

 
 

𝑡(e) 

 

, ⱨ𝑡(e)+1 , 𝑙(ⱨ, 𝑃ⱨ), 
𝑙(ⱨt(e),𝑃ⱨt(e))+𝑙(ⱨ,𝑃ⱨ) 

2 

Case (i) If 𝑍(ⱨ𝑡(e), ⱨ) = 𝑙(ⱨ𝑡(e), ⱨ). 

Then inequality (2.21) becomes 

ƒ (𝑙(ⱨ𝑡(e)+1,  𝑃ⱨ)) ≤ ƒ (𝑙(ⱨ𝑡(e), ⱨ)) − 𝜑 (𝑙(ⱨ𝑡(e), ⱨ)), for all e. 

this implies, 
 

ƒ (𝑙(ⱨ𝑡(e)+1, 𝑃ⱨ)) ≤ ƒ (𝑙(ⱨ𝑡(e), ⱨ)), for all e. 

Since ƒ is non-decreasing function. Therefore, 

𝑙(ⱨ𝑡(e)+1, 𝑃ⱨ) ≤  𝑙(ⱨ𝑡(e), ⱨ), for all e. 

Letting e → ∞ in above inequality, we obtain 

𝑙(ⱨ, 𝑃ⱨ) = 0 ⟹ ⱨ = 𝑃ⱨ. 

Case (ii) If 𝑍(ⱨ𝑡(e), ⱨ) = 𝑙(ⱨ𝑡(e), ⱨ𝑡(e)+1). 

Then inequality (2.21) becomes 

ƒ (𝑙(ⱨ𝑡(e)+1, 𝑃ⱨ)) ≤ ƒ (𝑙(ⱨ𝑡(e), ⱨ𝑡(e)+1)) − 𝜑 (𝑙(ⱨ𝑡(e), ⱨ𝑡(e)+1)), for all e. 
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Letting e → ∞ in above inequality, we obtain 

𝑙(ⱨ, 𝑃ⱨ) = 0 ⟹ ⱨ = 𝑃ⱨ. 

Case (iii) If 𝑍(ⱨ𝑡(e), ⱨ) = 𝑙(ⱨ, 𝑃ⱨ). 

Then inequality (2.21) becomes 

ƒ (𝑙(ⱨ𝑡(e)+1,  𝑃ⱨ)) ≤ ƒ(𝑙(ⱨ, 𝑃ⱨ)) − 𝜑(𝑙(ⱨ, 𝑃ⱨ)), for all e. 

Letting e →  ∞ in above inequality, and the continuity of ƒ and 𝜑, we get 

ƒ(𝑙(ⱨ,  𝑃ⱨ)) ≤ ƒ(𝑙(ⱨ, 𝑃ⱨ)) − 𝜑(𝑙(ⱨ, 𝑃ⱨ)), for all e. 
 

 

 
By using condition (C3), we get 

lim 
e → ∞ 

𝜑(𝑙(ⱨ, 𝑃ⱨ)) = 0. 

𝑙(ⱨ, 𝑃ⱨ) = 0 ⟹ ⱨ = 𝑃ⱨ. 

From all above discussed three cases, we get 𝑃ⱨ = ⱨ. 

Theorem 2.5. Adding to the hypotheses of Theorem 2.3 (respectively, Theorem 2.4) that 𝐾 is 

(𝑅1, 𝑅2) −directed, we obtain uniqueness of the fixed point of 𝑃. 

Proof Suppose that ⱨ and ⱪ are two fixed points of 𝑃. Since 𝐾 is (𝑅1, 𝑅2) −directed, there 

exists 𝑧 ∈ 𝐾 such that 

𝛼(ⱨ, 𝑧) ≤ 1, 𝛼(ⱪ, 𝑧) ≤ 1. 

(2.22) 

and 

𝛽(ⱨ, 𝑧) ≥ 1, 𝛽(ⱪ, 𝑧) ≥ 1. 

(2.23) 

Since 𝑃 is 𝑅i −preserving for i = 1, 2, from (2.22) and (2.23), we get 
 

𝛼(ⱨ, 𝑃𝑡 𝑧) ≤ 1, 𝛼(ⱪ, 𝑃𝑡𝑧) ≤ 1, for all 𝑡 ≥ 0. 

(2.24)    

and    

𝛽(ⱨ, 𝑃𝑡𝑧) ≥ 1, 𝛽(ⱪ, 𝑃𝑡 𝑧) ≥ 1, for all 𝑡 ≥ 0. 

(2.25)    

Substituting ⱨ = ⱨ, ⱪ = 𝑃𝑡𝑧 in (2.1), we have    

ƒ (𝑙(𝑃ⱨ, 𝑃(𝑃𝑡𝑧))) ≤  𝛼(ⱨ, 𝑃𝑡𝑧)ƒ(𝑍(ⱨ, 𝑃𝑡𝑧)) − 𝛽(ⱨ, 𝑃𝑡𝑧)𝜑(𝑍(ⱨ, 𝑃𝑡𝑧)). 

(2.26) 

Using (2.24), (2.25) and (2.1), we obtain 

ƒ(𝑙(ⱨ, 𝑃𝑡+1𝑧)) ≤ ƒ(𝑍(ⱨ, 𝑃𝑡𝑧)) − 𝜑(𝑍(ⱨ, 𝑃𝑡𝑧)), 

(2.27) 
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where 𝑍(ⱨ, 𝑃𝑡𝑧) = max {𝑙(ⱨ, 𝑃𝑡𝑧), 𝑙(ⱨ, 𝑃ⱨ), 𝑙(𝑃𝑡𝑧, 𝑃𝑡+1𝑧), 
𝑙(ⱨ,𝑃ⱨ)+𝑙(𝑃t𝑍,𝑃t+1𝑍)

 
2 

 

= max {𝑙(ⱨ, 𝑃𝑡𝑧), 𝑙(𝑃𝑡𝑧, 𝑃𝑡+1𝑧), 
𝑙(𝑃t𝑍,𝑃t+1𝑍)

}. 
2 

Case (i) If 𝑍(ⱨ, 𝑃𝑡𝑧) = 𝑙(ⱨ, 𝑃𝑡𝑧). 

Then inequality (2.27) becomes 

ƒ(𝑙(ⱨ, 𝑃𝑡+1𝑧)) ≤ ƒ(𝑙(ⱨ, 𝑃𝑡𝑧)) − 𝜑(𝑙(ⱨ, 𝑃𝑡𝑧)), for all 𝑡 ≥ 0. 

(2.28) 

Since ƒ is non-decreasing function. 

𝑙(ⱨ, 𝑃𝑡+1𝑧) ≤ 𝑙(ⱨ, 𝑃𝑡𝑧), for all 𝑡 ≥ 0. 

It follows that the sequence {𝑙(ⱨ, 𝑃𝑡+1𝑧)} is decreasing. Thus there exists 𝑟 ≥ 0 such that 

lim 𝑙(ⱨ, 𝑃𝑡+1𝑧) = 𝑟. 
𝑡→∞ 

We claim that 𝑟 = 0. 

Letting 𝑡 → ∞ in (2.28), we get 

ƒ(𝑟) ≤ ƒ(𝑟) −  lim𝜑(𝑙(ⱨ, 𝑃𝑡𝑧)), 
𝑡→∞ 

this implies, 

 

 
(2.29) 

 

lim 𝜑(𝑙(ⱨ, 𝑃𝑡𝑧)) = 0. 
𝑡→∞ 

By condition (C3), we obtain 

lim𝑙(ⱨ, 𝑃𝑡𝑧) = 0. 
𝑡→∞ 

(2.30) 

Similarly, we get 

 

 
 

lim 𝑙(ⱪ, 𝑃𝑡𝑧) = 0. 
𝑡→∞ 

Using (2.29) and (2.30), the uniqueness of the limit gives us ⱨ = ⱪ. 

Case (ii) If 𝑍(ⱨ, 𝑃𝑡𝑧) = 𝑙(𝑃𝑡𝑧, 𝑃𝑡+1𝑧) 

Then inequality (2.27) becomes 

ƒ(𝑙(ⱨ, 𝑃𝑡+1𝑧)) ≤ ƒ(𝑙(𝑃𝑡𝑧, 𝑃𝑡+1𝑧)) − 𝜑(𝑙(𝑃𝑡𝑧, 𝑃𝑡+1𝑧)), for all 𝑡 ≥ 0 

(2.31) 

Letting 𝑡 → ∞ in (2.31), we get 

lim ƒ(𝑙(ⱨ, 𝑃𝑡𝑧)) = 0, 
𝑡→∞ 

this implies, 
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(2.32) 

Similarly, we get 

 

 
(2.33) 

lim𝑙(ⱨ, 𝑃𝑡𝑧) = 0. 
𝑡→∞ 

 
 
 
 

lim 𝑙(ⱪ, 𝑃𝑡𝑧) = 0. 
𝑡→∞ 

Using (2.32) and (2.33), the uniqueness of the limit gives us ⱨ = ⱪ. 

Corollary 2.6. Let (𝐾, 𝑙) be a complete metric space, and let 𝑃 ∶ 𝐾 → 𝐾 be a given mapping 

such that if there exists a pair of generalized distance (ƒ, 𝜑) such that 

ƒ(𝑙(𝑃ⱨ, 𝑃ⱪ)) ≤  𝛼(ⱨ, ⱪ)ƒ(𝑙(ⱨ, ⱪ)) − 𝛽(ⱨ, ⱪ)𝜑(𝑙(ⱨ, ⱪ)),  for all ⱨ, ⱪ  ∈ 𝐾, 

And 𝛼, 𝛽 ∶ 𝐾 × 𝐾 → [0, ∞). 

Suppose 

(i) 𝑅i is 𝑁 −transitive for i = 1, 2; 

(ii) 𝑃 is 𝑅i −transitive for i = 1, 2; 

(iii) There exists ⱨ0 ∈ 𝐾 such that ⱨ0𝑅i𝑃ⱨ0 for i = 1, 2; 

(iv) 𝑃 is continuous. 

Then 𝑃 has a fixed point, that is, there exists ⱨ ∈ 𝐾 such that 𝑃ⱨ = ⱨ. 

Proof Taking 𝑍(ⱨ, ⱪ) = 𝑙(ⱨ, ⱪ) in Theorem 2.3 to get the proof. 

Corollary 2.5. In Corollary 2.6, if we replace the continuity of 𝑃 by the (𝑅1, 𝑅2) −regularity 

of (𝐾, 𝑙), then the conclusion of Corollary 2.6 holds. 
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